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Abstract
We present an approximation algorithm for the maxi-
mum weight matroid intersection problem in the inde-
pendence oracle model. Given two matroids defined
over a common ground set N of n elements, let k
be the rank of the matroid intersection and let Q de-
note the cost of an independence query for either ma-
troid. An exact algorithm for finding a maximum car-
dinality independent set (the unweighted case), due
to Cunningham, runs in O(nk1.5Q) time. For the
weighted case, algorithms due to Frank and Brezovec
et al. run in O(nk2Q) time. There are also scal-
ing based algorithms that run in O(n2

√
k log(kW )Q)

time, where W is the maximum weight (assuming all
weights are integers), and ellipsoid-style algorithms
that run in O

((
n2 log(n)Q+ n3 polylog(n)

)
log(nW )

)
time. Recently, Huang, Kakimura, and Kamiyama de-
scribed an algorithm that gives a (1− ε)-approximation
for the weighted matroid intersection problem in
O(nk1.5 log(k)Q/ε) time.

We observe that a (1 − ε)-approximation for the
maximum cardinality case can be obtained in O(nkQ/ε)
time by terminating Cunningham’s algorithm early. Our
main contribution is a (1−ε) approximation algorithm for
the weighted matroid intersection problem with running
time O(nk log2(1/ε)Q/ε2).

1 Introduction
We consider fast approximation algorithms for the
classical matroid intersection problem defined formally
below. An independence system consists of a finite
ground set N and a non-empty family of sets I ⊆ 2N

that is closed under taking subsets: A ∈ I implies B ∈ I
for all subsets B ⊂ A. Members of I are independent
sets. We let n = |N | and let k = maxS∈I |S| denote
the rank of the independence system. A matroid is an
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independence systemM = (N , I) such that for any two
independent sets A,B ∈ I, if |A| < |B|, then there is an
element e ∈ B \A such that B + e ∈ I. Matroids play
a fundamental role in several areas of optimization and
mathematics, and are surprisingly ubiquitous despite (or
perhaps for) their abstract definition.

Let M1 = (N , I1) and M2 = (N , I2) be two ma-
troids over a common ground set N . The matroid inter-
section M1 ∩M2 ofM1 andM2 is the independence
system (N , I1 ∩ I2). The intersection M1 ∩ M2 in-
herits substantial structure from the matroidsM1 and
M2, but M1 ∩ M2 is generally not a matroid. The
basic algorithmic problem here is to find the rank of
M1 ∩M2, or more constructively, a maximum cardinal-
ity independent set. When the ground set N is weighted,
the weighted matroid intersection problem is to find a
maximum weight independent set inM1 ∩M2.

The study of matroid intersection has a rich history,
of which we mention a few algorithmic highlights and re-
fer the reader to Schrijver [Sch03, Chapter 41]. Matroid
intersection was brought to prominence by Edmonds
in 1969 [Edm70]. He gave min-max characterizations
for the rank of a matroid intersection, characterized the
matroid intersection polyhedron, and derived polynomial-
time algorithms for the maximum cardinality and the
maximum weight matroid intersection problems. He also
extended the theory to the intersection of polymatroids.
Matroid intersection is a fundamental achievement in
combinatorial optimization and allows one to solve a
wide variety of concrete and abstract problems. Canoni-
cal problems captured by matroid intersection include
bipartite matchings, branchings, and packing spanning
trees (via matroid union). There are also several ap-
plications of matroid intersection outside of traditional
combinatorial optimization [Mur09, Rec13, DFZ11].

Following Edmonds’s work there has been consider-
able activity in algorithms for matroid intersection. We
mostly focus our attention on the oraclemodel, where the
matroidsM1 andM2 are exposed via independence ora-
cles: given S ⊆ N as a query, the independence oracle for
a matroid answers whether S is independent in that ma-
troid. There are more specified settings of interest that
we discuss later. In stating running times, let Q denote
the cost of an independence query. In 1975, Lawler ex-
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tended ideas from the Hungarian algorithm for bipartite
matching to obtain a primal-dual algorithm for weighted
matroid intersection in O(nk2(n2+Q)) time. Frank gave
a faster and simpler “weight-splitting” algorithm with
running time O(nk2Q) [Fra81] (after low-level optimiza-
tions; see also Brezovec, Cornuéjols and Glover [BCG86]
and [Sch03, Section 41.3a]). For integral weights
bounded by W , a scaling algorithm with a running time
of O(n2

√
k log(kW )Q) was obtained by Fujishige and

Zhang [FZ95]. Cunningham [Cun86] gave an algorithm
to compute the maximum cardinality independent set in
M1 ∩M2 with running time O(nk1.5Q) independence
queries. The above algorithms are all combinatorial.
Recently, Sidford, Lee and Wong improved the ellip-
soid method to obtain, among many other applications,
an O

((
n2 log(n)Q+ n3 polylog(n)

)
log(nW )

)
time algo-

rithm for weighted matroid intersection [LSW15].
In recent years, for practical and theoretical reasons,

there has been considerable interest in fast approximation
algorithms for combinatorial optimization problems that
already have strongly polynomial time algorithms. Two
examples that we wish to highlight are maximum flow
[CKM+11, Mą13, KLOS14, LS14, Pen16] and weighted
matching [DP14]. We are particularly inspired by the
work of Duan and Pettie, who described an algorithm
that for any fixed ε > 0, obtains a (1− ε)-approximation
for maximum weight matching in non-bipartite graphs
in linear time; more precisely, in time O(m log(1/ε)/ε),
where m is the number of edges. This is faster than
the best known exact algorithm for unweighted bipartite
matching, with running time O(m

√
n), by Hopcroft and

Karp [HK73], or running time Õ(m10/7), in the recent
breakthrough of Mądry [Mą13].

Bipartite matching is the standard special case for
matroid intersection, suggesting the possibility of fast
approximations for matroid intersection. A first step in
this direction was taken recently by Huang, Kakimura,
and Kamiyama [HKK14]. They obtain, among other
results, a (1− ε) approximation for weighted matroid in-
tersection using O(nk1.5 log(k)/ε) independence queries.
Their general framework uses scaling to obtain a (1− ε)-
approximation for the weighted case via the use of exact
algorithms for the unweighted matroid intersection prob-
lem; in the oracle model, they employ Cunningham’s
algorithm.

Our main result is the following theorem for weighted
matroid intersection in the oracle model.

Theorem 1.1. There is a polynomial-time algorithm
that, given two matroids M1 = (N , I1) and M2 =
(N , I2) and weights w : N → R, outputs a (1 − ε)-
approximation to the maximum weight independent set in
M1∩M2 using O(nk log2(1/ε)/ε2) independence queries

and arithmetic operations.

For any fixed ε, our result improves upon the work
of [HKK14] by a

√
k factor. In the oracle model we

essentially need O(nk) time and independence queries to
even verify whether a given set I is a maximum weight
independent set. The running time we achieve is thus
nearly optimal modulo the dependence on ε. Perhaps of
main importance is our technique. We show that a fast
approximation algorithm for maximum cardinality ma-
troid intersection problem can be leveraged in a scaling
framework for the weighted case. While we are inspired
by the approach of Duan and Pettie for matchings, algo-
rithms for (weighted) matroid intersection are generally
more involved than those for bipartite matchings. We
give a few more details of our ideas, compare them to
prior work, and close with a discussion of potential future
work in the subsection below.

1.1 Main techniques and related work
It is well-known that matroid intersection algorithms are
related to algorithms for bipartite matching, although
there are significant technical differences. Hopcroft and
Karp [HK73] obtained an O(m

√
n) time algorithm for

maximum cardinality bipartite matching inspired by
blocking flow algorithms, and is designed as follows.
In linear time, one can find several augmenting paths
for a current matching M such that after augmenting
along these paths, the shortest augmenting path for the
new matching M ′ is strictly longer than it is for M .
Coupled with the observation that if M is a matching
for which the length of the shortest augmenting path is
at least h, M is a (1− 1

h+1 )-approximate matching, we
see that most of the augmentations to reach an optimum
matching are short. This immediately yields an O(m/ε)-
time approximation algorithm for maximum cardinality
matching in bipartite graphs by running the linear-time
subroutine for O(1/ε) iterations.

Combinatorial matroid intersection algorithms also
rely on an augmenting path approach via so-called
exchange graphs (defined formally in Section 2.1).
Readers familiar with matroid intersection algorithms are
aware that not all paths in the exchange graph result in
a valid augmenting path. Moreover, the exchange graph
changes in an opaque fashion with each augmentation,
making it difficult to find more than a single augmenting
path in a single pass. In an important paper that
we make essential use of, Cunningham [Cun86] showed
that with technical care, the shortest augmenting path
approach of Hopcroft and Karp can still be extended
to matroid intersection, leading to an algorithm with
running time O(nk1.5Q). Implicit in his work is the
following theorem.



Theorem 1.2. ([Cun86]) A (1− ε)-approximation for
maximum cardinality independent set in the intersection
of two matroids can be obtained with running time
bounded by O(nk/ε) independence queries.

Scaling is a powerful methodology for solving
weighted problems via algorithms for the corresponding
unweighted problem. There is a long history of the effec-
tiveness of this approach; we refer the reader to the work
of Edmonds and Karp [EK72], Gabow [Gar85], Gabow
and Tarjan [GT89, GT91], and many others that fol-
lowed. Typically, scaling leads to an exact algorithm for
the weighted problem whose running time matches that
of the unweighted algorithm modulo polylogarithmic
factors. Sometimes an approximation algorithm for the
weighted case is implicit in these scaling algorithms, but
the running time is still proportional to the time of the
exact unweighted algorithm. The recent work of Huang
et al. [HKK14] uses such a scaling approach to obtain a
(1− ε)-approximation for weighted matroid intersection.
We note that theirs is the first work to consider ap-
proximate weighted matroid intersection. In particular,
they use the weight-splitting approach of Frank [Fra81],
scaling, and exact algorithms for unweighted matroid in-
tersection, and our work is influenced by their high-level
framework.

Duan and Pettie’s algorithm for matching is also
a scaling algorithm; however, they do not solve the
unweighted problem to optimality. At a high level,
we interpret their approach as incorporating a (1− ε)-
approximation for maximum cardinality matching in a
scaling framework to obtain a (1− ε)-approximation for
weighted matching. (The algorithm in [DP14] is not
actually structured in this fashion.) We explicitly use
such a decomposition and show that it can be imple-
mented in the setting of weighted matroid intersection
via Cunningham’s approximate cardinality algorithm.
We briefly point out why this is challenging. The main
difficulty in matroid intersection is in dealing with the
exchange graph for augmentations. Frank’s approach
substantially simplified previous weighted matroid inter-
section algorithms by using a weight splitting approach
instead of explicitly maintaining dual variables. However,
this necessitates the use of, and reasoning by, auxiliary
matroids induced by weights on the elements of the
ground set. The proof of correctness crucially relies on
properties of these derived matroids, and how augmenta-
tions in their exchange graphs preserve optimality in the
original weighted setting. Unlike Huang et al. [HKK14],
who run Cunningham’s algorithm to optimality, we stop
Cunningham’s algorithm after a few iterations; our tech-
nical task then is to adjust the weights of the elements
in such a way that the invariants with respect to the

auxiliary matroids are preserved (which helps reason
about the correctness of the algorithm), while also en-
suring that the adjustment is controlled (such that we
still derive a (1− ε)-approximation). Whereas Duan and
Pettie search once for augmenting paths per iteration,
we make O(1/ε) searches per iteration, which leads to
the quadratic dependence of 1/ε2 in the running time.

There has been substantial work on matroid inter-
section for specific classes of matroids, including linear
matroids [Cun86, GX96, Har09, Har07, CKL13], graphic
matroids [GX89], and other classes [FS89]. In specific
classes of matroids it is possible to take advantage of
the structure of the problem to obtain faster running
times; techniques include data structures, modifications
to augmenting path algorithms, and algebraic methods
(particularly for linear matroids [Har09, CKL13]). Our
focus here is on the oracle model, but the high-level
approach of incorporating an approximation for the un-
weighted case in a scaling framework may lead to faster
running times for specific settings of interest. The work
of Huang et al. [HKK14] and ours raises several interest-
ing open questions on approximate matroid intersection
which we leave to future work.

1.2 Paper organization
In Section 2, we review basic definitions and results as
they are needed for the main approximation algorithm.
In the course of reviewing Cunningham’s algorithm,
we observe that it implies a (1 − ε) approximation
for the cardinality case. In Section 3, we study an
unweighted matroid induced by a weighted matroid.
Establishing basic observations for this auxiliary matroid
will greatly ease the burden of proof when subsequently
presenting the algorithm. In Section 4, we describe and
analyze the approximation algorithm scaled-weight-
splitting for weighted matroid intersection.

2 Preliminaries
A maximum-cardinality independent set of an indepen-
dence system is a base. In a matroid any two bases have
the same cardinality. Let M = (N , I) be a matroid,
and I ∈ I. A set not in I is dependent. A circuit is a
minimal dependent set. The span of I, written span(I),
is the set of elements e ∈ N such that I+e is dependent.
An element e ∈ N \ I such that I + e ∈ I is free, and
we write free(I)

def
= N \ span(I). An exchange is a pair

(d, e) of elements d ∈ I and e ∈ span(I) \ I such that
I − d + e ∈ I. It is well-known that an exchange is a
replacement that preserves span.



2.1 Exchange graphs
Increasing an independent set in the matroid intersection
is trickier than in a single matroid. Let I ∈ I1 ∩ I2 be
an independent set, and suppose we add an element
e1 ∈ free1(I) that is free in M1. Then I + e1 may be
dependent in M2, in which case we need to pick an
element d2 ∈ I such that I − d2 + e1 ∈ I2. Removing d2
may free a third element e2 inM1 (i.e., I+e1−d2+e3 ∈
I1) that we add. But now the set may be dependent in
M2, and we have to delete another element, and so on
and so forth.

To efficiently find sequences of additions and dele-
tions that improve I, one considers an auxiliary structure
called the exchange graph. The exchange graph is a di-
rected graph G whose arcs encode exchanges in either
matroid. Its vertex set consists of N ∪ {s, t}, where s
and t are artificial vertices that play the roles of source
and sink. The arcs of the exchange graph are of the form
• (s, e) where e ∈ free1(I);
• (d, e) where d ∈ I, e ∈ span1(I) \ I, and d and e

form an exchange inM1;
• (e, d) where d ∈ I, e ∈ span2(I) \ I, and d and e

form an exchange inM2; and
• (e, t) where e ∈ free2(I).

An augmenting path is a path P from s to t such that
I∆(P \ {s, t}) is independent in bothM1 andM2. For
ease of notation, we will sometimes write I∆P when we
really mean I∆(P \ {s, t}).

Not all paths from s to t are augmenting paths,
because one exchange along a path may invalidate
subsequent exchanges. We say a path v1 → v2 → · · · →
vk is minimal if it has no shortcuts; that is, there are no
arcs of the form (vi, vj) where j > i + 1, that imply a
shorter sub-path from v1 to vk.

Lemma 2.1. ([Kro75], see also [Law76, Lemma
3.1]) Let M1 = (N , I1) and M2 = (N , I2) be two
matroids, I ∈ I1 ∩ I2 an independent set, G = (N ∪
{s, t}, E) the exchange graph of I, and P a path from s
to t. If P is a minimal path from s to t, then P is an
augmenting path.

Augmenting paths are the primary (if not only) way
to increase the cardinality in a matroid intersection.
By adding them one by one, we eventually obtain the
maximum cardinality independent set. This naive aug-
menting path algorithm requires O(nk2) independence
queries: we build a new exchange graph after each of k
augmentations, and an exchange graph requires O(nk)
calls to the independence oracle, one for every possible
edge.

For more advanced algorithms, we leverage the fact
that an augmenting path does not free an element, in
the following well-known sense.

Lemma 2.2. Let M1 = (N , I1) and M2 = (N , I2) be
two matroids, I ∈ I1 ∩ I2 an independent set, and P an
augmenting path for I. Then free1(I∆P ) ( free1(I) and
free2(I∆P ) ( free2(I).

Proof. By symmetry, it suffices to prove that
free1(I∆P ) ( free1(I). In M1, augmenting I by P
can be broken into first adding a free element to I, and
then performing a sequence of exchanges. Adding a free
element only increases the span, while each exchange
preserves the span. The span of I is a strict subset of
the span of I∆P because I∆P spans the free element
first added to I. �

2.2 Cunningham’s Algorithm
Not unlike Hopcroft and Karp’s algorithm for bipartite
matching, Cunningham observes an inverse relationship
between the cardinality of an independent set and the
length of its shortest augmenting path.

Lemma 2.3. ([Cun86, Corollary 2.2]) Let M1 =
(N , I1) and M2 = (N , I2) be two matroids over a
common ground set N , with rank(M1 ∩M2) = k, and
let I ∈ I1∩I2 be an independent set in their intersection.
If |I| < k, then there exists an augmenting path of length
at most 2|I|/(k − |I|) + 1.

The core driver of Cunningham’s algorithm is a subrou-
tine that we refer to as batch-augment. If ` is the length
of the shortest augmenting path for an independent set
I ∈ I, then batch-augment augments I along a maxi-
mal collection of disjoint augmenting paths of length `,
after which the length of the shortest augmenting path
has strictly increased.

Lemma 2.4. ([Cun86]) Let M1 = (N , I1) and M2 =
(N , I2) be two matroids, and let I ∈ I1 ∩ I2 be
an independent set in their intersection. Let ` be
the length of the shortest augmenting path for I.
batch-augment(M1,M2,I) computes, in O(nk) inde-
pendence tests and O(nk) time, a set of disjoint aug-
menting paths P such that
(a) I ′ def= I∆(

⋃
P∈P P ) ∈ I1 ∩ I2, and

(b) the length of the shortest augmenting path for I ′ is
at least `+ 2.

Cunningham’s algorithm calls batch-augment
about 2

√
k times on an initially empty set I = ∅. The

first
√
k iterations increases the length of the shortest

augmenting path for I to at least 2
√
k, which by Lemma

2.3 implies that I has cardinality about k −
√
k. The

second
√
k iterations increase the cardinality of I to k,

as desired. The total algorithm takes O(k1.5n) inde-
pendence queries and running time. If we instead call



batch-augment O(1/ε) times, then by Lemma 2.3, I has
cardinality at least (1− ε)k.
Remark 2.1. We do not require the full power of an
independence oracle to implement batch-augment. The
subroutine only requires the following queries for each
matroidM = (N , I):
(a) Given an independent set I ∈ I and an element

f /∈ I, is f in free(I)?
(b) Given an independent set I ∈ I, element d ∈ I, and

element e /∈ I, is (d, e) an exchange?

Of course, either query is easily implemented in a
constant number of calls to an independence oracle.
This technicality will be important later, when the
proposed algorithm scaled-weight-splitting calls
batch-augment on auxiliary matroids that are not
equipped with independence oracles.

2.3 Weight splittings
The algorithm for weighted matroid intersection pro-
posed by Lawler [Law75] is an intricate primal-dual
algorithm based on an exponential-size LP. Frank’s algo-
rithm [Fra81] is simpler, and is founded on the following
basic observation.

Lemma 2.5. ([Fra81, Lemma 3]) Let I ∈ I1 ∩ I2 be
an independent set and w = w1 +w2 a decomposition of
weights such that
(i) I is a maximum weight independent set in I1 with

respect to w1, and
(ii) I is a maximum weight independent set in I2 with

respect to w2.
Then I is a maximum w-weight independent set in I1∩I2.
We say that two weights w1 and w2 are a weight splitting
if w1 +w2 = w. Frank’s algorithm builds an independent
set I ∈ I1 ∩ I2 in conjunction with a weight splitting
(w1, w2) and terminates when they satisfy Lemma 2.5.

3 A matroid induced by weights
Before diving into the intersection of two weighted
matroids, we pause for some structural observations
regarding a single weighted matroid. When the objective
is to maximize weight over independent sets, there is a
natural reduction from weighted matroids to unweighted
matroids.

Lemma 3.1. ([Fra08, Proposition 2]) Let M =
(N , I) be a matroid weighted by w : N → R≥0, and
let Bw be the collection of bases of M with maximum
w-weight; that is,

Bw = {B ∈ B : w(B) ≥ w(I) for all I ∈ I},

where B denotes the set of bases ofM. Then Bw is the
set of bases of a matroidMw = (N , Iw).

This matroid Mw is the w-induced matroid of M.
We use weight-induced matroids to take advantage of
Cunningham’s techniques for unweighted matroids.

At this point, we know that Mw is a well-defined
matroid but know little of its shape. Building some
intuition for Mw helps motivate the design of our
algorithm and eases the burden of proving correctness1.
Several of these properties seem to be known, but we
could not easily find proofs in the literature. We reprove
the claims as needed.

Lemma 3.2. Let I ∈ Iw, and let d ∈ I and e ∈ span(I)
be an exchange inM. Then w(d) ≥ w(e).

Proof. The inequality is clear when I is a maximum
weight base. Otherwise, if B is a maximum weight base
containing I, then (d, e) is also an exchange pair in B,
and the claim follows. �

The subroutine batch-augment, which we will apply to
weight-induced matroids, is ultimately an augmenting
path algorithm. The implementation requires some basic
and tangible conditions to identify exchanges and free
elements with respect to weighted matroids.

Lemma 3.3. LetM = (N , I) be a matroid with ground
set weighted by w : N → R≥0, let I ∈ Iw, and let
d ∈ I and e ∈ span1(I) be an exchange in the (original)
matroid M. Then d and e form an exchange in the
weight-induced matroidMw iff w(d) = w(e).

Proof. By Lemma 3.2, w(d) ≥ w(e). If d and e form an
exchange in Iw, then e and d form an exchange with
respect to I − d+ e (with their roles reversed) inMw,
whence (again) by Lemma 3.2 we have w(e) ≥ w(d).

Conversely, suppose w(d) = w(e). Let B be a max-
imum weight base containing I. By the augmentation
property, we can extend I − d + e to a base C such
that I − d+ e ⊆ C ⊆ B + e. Because e and d form an
exchange, I + e = (I − d+ e) + d is dependent, and we
deduce that B \ C = {d} and C \B = {e}. We have,

w(C) = w(C − e) + w(e) = w(B − d) + w(d) = w(B).

Thus, C is a maximum weight base, and as a subset of
C, I − d+ e ∈ Iw. �

Lemma 3.4. LetM = (N , I) be a matroid weighted by
w : N → R≥0, let I ∈ Iw, and let f ∈ free(I) be a
maximum weight free element. Then I + f ∈ Iw.

Proof. Let B be a maximum weight base containing I,
and suppose B does not contain f . By the augmentation

1One can also prove the correctness of Frank’s algorithm in
terms of weight-induced matroids.



property, we can extend I + f to a base C such that
I + f ⊆ C ⊆ B + f . The difference C \ B consists of
a single element b. If b is not in C, then b is not in I,
and in particular, b ∈ free(I). By choice of f , we have
w(f) ≥ w(b). Thus,

w(C)− w(B) = w(C \B)− w(B \ C)

= w(f)− w(b)

≥ 0,

and C is a maximum weight base. As a subset of C,
I + f ∈ Iw. �

Lastly, we lay out one set of necessary conditions to
assert that an independent set I ∈ I is also independent
in Iw. This is particularly handy when we start
modifying the weights while trying to keep our current
solution I independent in the weight-induced matroids.

Lemma 3.5. LetM = (N , I) be a matroid with ground
set weighted by w : N → R≥0, and let I ∈ I. Suppose
(i) For all f ∈ free(I), and d ∈ I, w(d) ≥ w(f).
(ii) For all pairs d ∈ I and e ∈ span(I) \ I that form

an exchange, w(d) ≥ w(e).
Then I ∈ Iw.

Proof. Let ` = |I|. We first show that I is a maximum
weight independent `-set. Let J ∈ I(`) be another
independent set with cardinality `. I and J are both
bases in the truncationM(`) ofM to independent sets
of cardinality ` or less. Let ϕ : I \ J ←→ J \ I be a
bijection such that for all e ∈ I \ J , I − d + ϕ(d) ∈ I.
Fix d ∈ I. We either have
(a) ϕ(d) ∈ free(I), in which case w(d) ≥ w(e) by

assumption (i).
(b) ϕ(d) ∈ span(I)\I, in which case d and ϕ(d) form an

exchange and w(d) ≥ w(ϕ(d)) by assumption (ii).
Thus,

w(I) = w(I ∩ J) + w(I \ J)

≥ w(I ∩ J) + w(ϕ(I \ J))

= w(J),

and I is a maximum weight independent `-set.
Now, let B be a maximum weight base. By the

augmentation property, we can extend I to a base C
such that I ⊆ C ⊆ B ∪ I. B \ (C \ I) is an `-set, so
w(I) ≥ w(B \ (C \ I)). We have,

w(C) = w(I) + w(C \ I)

≥ w(B \ (C \ I)) + w(C \ I)

= w(B),

so C is a maximum weight base. As a subset of C,
I ∈ Iw. �

3.1 Weighted restrictions
LetM = (N , I) be a matroid with ground set weighted
by w : N → R≥0. For c ∈ R, the weight c

restriction ofM is the restrictionM|Nc
, where Nc

def
=

{e ∈ N : w(e) ≥ c} is the set of elements with weight
at least c. For a general set S ⊆ N , we denote
the intersection of S and Nc as Sc

def
= S ∩ Nc =

{e ∈ S : w(e) ≥ c}.
Restrictions by weight are of particular interest to

our scaling architecture. The algorithm maintains a
sort of water level c (say c = 2i, for some integer
i ∈ Z), and restricts its attention elements of weight
≥ c. More precisely, we operate in matroids of the form
(Mw)|Nc

. It is desirable to understand the structure of
(Mw)|Nc

, particularly in its similarity and contrast to
the unrestricted matroidMw.

Our first lemma is a sort of sanity check to verify
that a maximum weight base restricts to a maximum
weight base within any Nc.

Lemma 3.6. LetM = (N , I) be a matroid with ground
set weighted by w : N → R≥0, and let c ∈ R. For any
maximum weight base B ∈ Bw, B ∩ Nc is a base of
M|Nc

.

Proof. If not, then let f ∈ Nc ∩ free(Bc). By the
augmentation property, we can extend Bc ∩ Nc + f
to a base C such that Bc + f ⊆ C ⊆ B + f . Let d
be the unique element in B \ C. Then d /∈ Nc, so
w(f) ≥ c > w(d). We have,

w(C) = w(B − d) + w(f)

> w(B − d) + w(d)

= w(B),

and B is not a maximum weight base, a contradiction.
�

The following lemma extends Lemma 3.6 to show
that the operations of taking weight induced matroids
and restricting elements by weight are compatible with
one another.

Lemma 3.7. LetM = (N , I) be a matroid with ground
set weighted by w : N → R≥0, and let c ∈ R. Then
(M|Nc)w = (Mw)|Nc .

Proof. Let B ∈ Bw be a maximum weight base, and let
C be a base inM|Nc

. By the augmentation property, we
can extend C to a baseD inM such that C ⊆ D ⊆ B∪C.
Since C spans Bc and |C| = |Bc|, we have D\C = B\Bc.

Let ϕ : B \D ←→ D \ B be a bijection such that
for all b ∈ B \ D, B − b + ϕ(b) ∈ I. Note that since
B \D = Bc \C and D\B = C \Bc, ϕ is a bijection from



I ← ∅, w1 ← w, w2 ← 0
for each scale as a power of 2 from W down to 1

repeat 1/ε times:
restrict N to elements with weight at least the current scale
run batch-augment on I in Mw1

1 ∩M
w2
2 a fixed number of times

shift weight from w1 to w2 by an ε-fraction of the current scale
return I

Figure 1: Sketch of the algorithm scaled-weight-splitting

Bc \ C to C \Bc, such that for all b ∈ Bc \ C, we have
B− b+ϕ(b) ∈ I. Because B is a maximum weight base,
for all b ∈ Bc \ C, we have w(bc) ≥ w(ϕ(b)). Therefore,

w(Bc) = w(Bc ∩ C) + w(Bc \ C)

≥ w(Bc ∩ C) + w(ϕ(Bc \ C))

= w(C),

and Bc is a maximum weight base inM|Nc
. Since any

I ∈ (Iw)|Nc
is a subset of Bc for some maximum weight

base B, this implies that (Iw)|Nc ⊆ (I|Nc)w,
On the other hand, if C is a maximum weight base

inM|Nc
, then w(C) ≥ w(Bc), and we have

w(D) = w(D \ C) + w(C)

≥ w(B \Bc) + w(Bc)

= w(B),

so D is a maximum weight base inMw. As a subset of
D, C ∈ Iw, and more generally, (I|Nc

)w ⊆ (Iw)|Nc
. �

4 A scaling approximation for weighted
matroid intersection

We first present an approximation algorithm, scaled-
weight-splitting, that has a slightly slower running
time than our final algorithm but captures the main
ideas. The running time depends on logW where W
is the maximum weight of any element. Removing the
logW factor is presented afterwards as an adjustment
to scaled-weight-splitting. A high level sketch of
scaled-weight-splitting is given in Figure 1; the full
algorithm is in Figure 2.

First and foremost, scaled-weight-splitting is a
scaling algorithm. A scale, in this setting, is a natural
number between 1 and logW , where W is the maximum
weight. At each scale i, we only consider elements e with
w(e) = Ω(2i). To some extent, the scaling algorithm
reduces the weighted problem to an unweighted one at
each scale.

Within a scale i, there is an inner loop that repeats
1/ε times. Henceforth, an iteration will mean a pair

(i, j), where i is the scale and j is the index of the inner
loop. There are ` = O(log(W/ε)/ε) total iterations over
the algorithm.

Each iteration of the inner loop tries to augment
I with the approximate version of Cunningham’s algo-
rithm, calling batch-augment only ` times. (Running
Cunningham’s exact algorithm to completion, of course,
forfeits any chance of improving on Cunningham’s run-
ning time.) We then shift ε2i weight per element from w1

to w2, by a similar Hungarian-style technique as Frank’s
algorithm.

Interrupting Cunningham’s algorithm at a fixed
length results in an incomplete Hungarian tree, forcing
some loss in approximation. We truncate the tree further
at a carefully selected depth, and then “cheat” by adding
a small amount of extra weight to elements in I that are
cut off. This extra weight is stored in a map denoted
excess : N → R≥0, which has value 0 for any element
not in I. The excess weight helps maintain certain
invariants for the sake of basic correctness, but hurts
the approximation ratio. The amount of excess added
per element cut-off, ε2i at an iteration (i, j), is an O(ε)
fraction of any element in play at scale i. Because the
excess is built by these relatively small increments, and
the stunted Hungarian trees are sufficiently deep, we
can bound the total amount of excess over the entire
algorithm to an O(ε) fraction of w(I).

Note that we do not maintain an exact weight
splitting: in general, w1(e) + w2(e) may not equal w(e)
for any element e ∈ N .

Theorem 4.1. Let M1 = (N , I1) and M2 = (N , I2)
be two matroids over a common ground set N , weighted
by w : N → [1,W ]. Then scaled-weight-splitting
(N,I1,I2,w,ε) returns an independent set I ∈ I1 ∩ I2
such that for all J ∈ I1 ∩ I2, w(I) ≥ (1 − O(ε))w(J).
Its running time is bounded by O(nk log2(W/ε)/ε2) calls
to an independence oracle.



scaled-weight-splitting(N,I1,I2,w,ε)
// assume 1/ε is an integer and mine∈N w(e) = 1
I ← ∅
b1 ← dlog maxe∈N w(e)e, b2 ← dlog εe, `← (b1 + 1− b2)/ε
for all e ∈ N
w2(e)← 0, excess(e)← 0
δ ← ε2blog w(e)c

w1(e)← δ · bw(e)/δc
for i = b1 down to b2

// * start of scale i *
δi ← ε2i−1

for j = 1, . . . , 1/ε
// * start of iteration (i, j) *
Ni,j ←

{
e ∈ N : w1(e) ≥ 2i − (j − 1)δi

}
repeat ` times
I ← batch-augment(Mw1

1 |Ni,j
,Mw2

2 |Ni,j
,I)

for each m ∈ N, let Sm ⊆ Ni,j be the set of elements whose shortest
path from s in the exchange graph of (Mw1

1 ∩M
w2
2 )|Ni,j

has length m
let m? ∈ {2, 4, 6, . . . , 2`} minimize w(Sm?) // Sm? ⊆ I
for all e ∈ S1 ∪ S2 ∪ · · · ∪ Sm?−1
w1(e)← w1(e)− δi, w2(e)← w2(e) + δi

for all e ∈ Sm?

w2(e)← w2(e) + δi, excess(e)← excess(e) + δi
for all e ∈ N \ I // reset excess for all e /∈ I
w1(e)← w1(e)− excess(e), excess(e)← 0

// * end of iteration (i, j) *
// * end of scale i *
return I

Figure 2: Full details of the algorithm scaled-weight-splitting

4.1 Correctness
We first prove the correctness of Theorem 4.1. The
goal of the algorithm is to approximate the winning
conditions of Frank’s algorithm (Lemma 2.5). Formally,
we target the following.

Lemma 4.1. Let M1 = (N , I1) and M2 = (N , I2) be
two matroids over a common ground set N , weighted by
w : N → R≥1, and let ε > 0. Let w1, w2 : N → R≥0 be
two sets of weights and I ∈ I1 ∩ I2 an independent set
such that
(i) w1 and w2 are approximately a weight-splitting of

w; specifically, w1(e) +w2(e) ≥ (1−O(ε))w(e) for
all e ∈ N , and w1(I) + w2(I) ≤ (1 +O(ε))w(I).

(ii) The free elements have nearly zero weight; namely,
for all f ∈ free1(I), w1(f) ≤ ε, and for all
g ∈ free2(I), w2(g) = 0.

(iii) I ∈ Iw1
1 ∩ I

w2
2 .

Then I is a (1−O(ε))-approximation for the maximum

weight independent set in the intersection of M1 and
M2.

Proof. Let J ∈ I1 ∩ I2 be a competing independent set.
We have,

w(J) ≤ (1 +O(ε))(w1(J) + w2(J)) by (i),

= (1 +O(ε))
[
w1(J ∩ span1(I))

+ w1(J ∩ free1(I))

+ w2(J)
]
.(4.1)

We analyze each of the three terms w1(J ∩ span1(I)),
w1(J ∩ free1(I)), and w2(J) individually. If I ∈ Iw1

1 ,
then by Lemma 3.2, we have w1(J ∩ span1(I)) ≤ w1(I).
As per the second term, for each f ∈ J∩free1(I), we have
w1(f) ≤ ε/2 by (ii). Assuming w(e) ≥ 1 and hypothesis
(i), we have w2(f) ≥ 1 − O(ε) for each f , and in
sum, w1(J ∩ free1(I)) ≤ O(εw2(J ∩ free1(I))). Finally,
if I ∈ Iw2

2 and w2(free2(I)) = 0, then I is a maximum



w2-weight independent set inM2 and w2(J) ≤ w2(I).
Plugging these inequalities into equation (4.1), we have,

w(J) ≤ (1 +O(ε))(w1(I) +O(ε)w2(I) + w2(I))

≤ (1 +O(ε))(w1(I) + w2(I)).

By assumption (i), w1(I) + w2(I) ≤ (1 +O(ε))w(I), so
we have w(J) ≤ (1 +O(ε))w(I), as desired. �

With Lemma 4.1 in mind, we now begin to analyze
the algorithm. We first observe that all relevant
quantities at a scale i are integer multiples of δi.

Lemma 4.2. At any point in iteration (i, j), for all
e ∈ Ni,j, w1(e) ∈ δi · Z and w2(e) ∈ δi · Z.

Proof. Let e ∈ Ni,j . Observe that for all preceding scales
i′ < i, δi′ is an even multiple of δi, because the δi’s simply
half from one scale to the next. At the beginning of the
algorithm, w1(e) ∈ δ′i · Z and w2(e) = 0 for some i′ ≤ i.
All subsequent adjustments to w1(e) and w2(e) were
in units of δi′′ for various scales i′′ between i′ and i,
which are each divisible by δi. Thus, w1(e) ∈ δi · Z and
w2(e) ∈ δi · Z, as desired. �

Next, we set a foundation for how w1(e) and w2(e)
generally develop across iterations. The following lemma
shows that the maximum w1-weight for free elements in
M1 is gradually decreasing, all the way down to ε/2 at
the end of the algorithm. This addresses the first half of
condition (ii) in Lemma 4.1.

Lemma 4.3. (a) At the beginning of iteration (i, j),
w1(e) ≤ 2i + (1− j)δi for all e ∈ free1(I).

(b) At the end of iteration (i, j), w1(e) ≤ 2i − jδi for
all e ∈ free1(I).

(c) At the end of the algorithm, w1(e) ≤ ε/2 for all
e ∈ N \ span1(I).

Proof. We prove (a) and (b) together in one large
induction argument on (i, j). Condition (c) simply
restates (b) at the end of the final iteration.

At the beginning of the first iteration (b1, 1), we have
w1(e) ≤ 2b1 for all e. For any subsequent scale (i, j),
condition (a) matches condition (b) at the beginning of
the previous iteration (either (i, j − 1) or (i − 1, 1/ε),
depending on j).

During iteration (i, j), we grow I only by augmenting
paths, so by Lemma 2.2, free1(I) does not increase. We
decrement w1(e) by δi for all e ∈ Ni,j ∩ free1(I) because
these are precisely the elements in layer S1. Subtracting
δi from condition (a) at the beginning of iteration (i, j)
gives w1(e) ≤ 2i + (1− j)δi − δi = 2i − jδi at the end of
iteration (i, j), hence (b). �

The story forM2-free elements is simpler.

Lemma 4.4. At any point in the algorithm, for all
e ∈ free2(I), w2(e) = 0.

Proof. Initially, w2 is zero everywhere. By Lemma 2.2,
the augmentation loop of each iteration does not free
any elements inM2. In the weight-update step of each
iteration, the algorithm only increases w2 on elements
whose distance from the source s in the exchange
graph is less than or equal to 2`. By Lemma 2.4,
running batch-augment for ` iterations ensures that
all augmenting paths have length strictly greater than
2`. Since anyM2-free element e would be the endpoint
of an augmenting path, this puts anyM2-free elements
out of reach of the weight update. �

The next lemma shows that the elements in I always
have larger w1-weight than anyM1-free elements. This
is particularly relevant in light of Lemma 3.5.

Lemma 4.5. (a) At the beginning of iteration (i, j),
w1(d) ≥ 2i + (1− j)δi for all d ∈ I.

(b) After each call to batch-augment in iteration (i, j),
we have w1(d) ≥ 2i + (1− j)δi for all d ∈ I.

(c) At the end of scale i, w1(d) ≥ 2i for all d ∈ I.

Proof. At the beginning of the first iteration (b1, 1),
I = ∅, so (a) is satisfied vacuously. By induction,
for subsequent iterations (i, j), (a) is satisfied at the
beginning of iteration (i, j) because (b) holds at the end
of the previous iteration (either (i, j − 1) or (i− 1, 1/ε)).

When we run batch-augment in scale (i, j), we
restrict the subroutine to elements in Ni,j . Any element
added to I, by membership in Ni,j , has w1(e) ≥
2i − (j − 1)δi.

After ` iterations of batch-augment in scale (i, j),
the algorithm proceeds to shift weight from w1 to w2.
Subtracting the decrement of δi leaves w1(d) ≥ 2i − jδi
at the end of scale (i, j) for all d ∈ I, as desired. �

The next task is to verify condition (iii) in Lemma
4.1, which is that I ∈ Iw1

1 ∩ I
w2
2 .

Lemma 4.6. (a) At the beginning of iteration (i, j),
I ∈ Iw1

1 ∩ I
w2
2 .

(b) After each call to batch-augment in iteration (i, j),
we have I ∈ Iw1

1 ∩ I
w2
2 .

(c) At the end of iteration (i, j), I ∈ Iw1
1 ∩ I

w2
2 .

(d) At the end of the algorithm I ∈ Iw1
1 ∩ I

w2
2 .

Proof. At the beginning of the first iteration (b1, 1),
I = ∅ is independent in Iw1

1 ∩ Iw2
2 . At the beginning

of each subsequent iteration, condition (a) follows from
condition (b) at the end of the previous iteration.

Before we call batch-augment, by Lemma 4.5 and
Lemma 3.7, I ∈ (Iw1

1 ∩ Iw2
2 )|Ni,j

. The subroutine



preserves independence, hence I ∈ (Iw1
1 ∩I

w2
2 )|Ni,j

after
it is called. By Lemma 3.7, this implies I ∈ Iw1

1 ∩ I
w2
2 .

Before the end of iteration (i, j), and after all calls
to batch-augment, we shift weight from w1 to w2. If we
had repeated batch-augment until I no longer improves
(and effectively run all of Cunningham’s algorithm), then
we can use Frank’s updating scheme, which guarantees to
preserve I ∈ Iw1

1 ∩I
w2
2 because there are no augmenting

paths. This is not quite the case here, where ` iterations
of batch-augment only ensures that each augmenting
path has length at least 2`.

To this end, we cut off the Hungarian tree at some
layer m ≤ 2`, and we halt all updates in layers beyond
layer m. All elements in layers m′ < m are updated as
usual, and in layer m (which is an even layer, containing
only elements of I), we do not decrease w1 as we normally
would. At a high level, the shortcuts we take strictly
help I with respect to independence in Mw1

1 ∩ M
w2
2 .

Ultimately, one can verify case by case that this cheating
preserves Lemma 3.5 directly, and I ∈ Iw1

1 ∩ I
w2
2 at the

end of iteration (i, j).
Let d ∈ I and e /∈ I form an exchange in M1.

If w1(d) > w1(e), then by Lemma 4.2, the difference
w1(d) − w1(e) is at least δi, hence w1(d) ≥ w1(e) even
after subtract δi from w1(e).

Otherwise, by Lemma 3.2, w1(d) = w1(e). By
Lemma 4.5, e ∈ Ni,j , and by Lemma 3.3, (d, e) is an arc
in the exchange graph of I inMw1

1 ∩M
w2
2 |Ni,j . Therefore,

the distance from the source s to e in the exchange graph
is at most one more than the distance from s to d. If
w1(d) is decreased, then d ∈ Sm′ for some layer m′ < m.
If Sm′′ is the layer containing e, then m′′ ≤ m′ + 1 < m.
Therefore w1(e) is also decreased, by the same amount
δi. After updating weights, we still have w1(d) ≥ w1(e).

Now, let d ∈ I and e /∈ I form an exchange
in M2. If w2(d) > w2(e), then by Lemma 4.2, the
difference between the weights is at least δi. Therefore,
even if we increase w2(e) and not w2(d), we still have
w2(e) ≤ w2(d).

Suppose instead that w2(d) = w2(e). By Lemma
3.3, (e, d) is an arc in the exchange graph ofMw1

1 ∩M
w2
2 .

If w2(e) is incremented, then e is in layer Sm′ for some
m′ < m. Because (e, d) is an arc, d is in layer Sm′+1 or
earlier. Since m′ + 1 ≤ m, w2(d) is also incremented.
Thus w2(d) ≥ w2(e) after the update.

The preceding case analysis shows that elements of
I continues to dominate all exchanges in (M1∩M2)|Ni,j

after the weight update. By Lemma 4.3, and Lemma 4.5,
we have w1(d) ≥ w1(e) for all d ∈ I and e ∈ free1(I),
and by Lemma 4.4, w2(d) ≥ 0 = w2(e) for all d ∈ I and
e ∈ free2(I). By Lemma 3.5, I ∈ Iw1

1 ∩ I
w2
2 at the end

of iteration (i, j), as desired.
Finally, condition (d) is just condition (c) at the end

of the last iteration (b2, 1/ε). �

I ∈ Iw1
1 ∩I

w2
2 is preserved in Lemma 4.6 because we

give elements in I extra weight, stored in the vector
excess. Cheating the weight splitting weakens the
approximation ratio, and we have to show that the sum
of violations is controlled in the aggregate.

Lemma 4.7. At the end of the algorithm, we have
excess(I) ≤ εw(I).

Proof. Consider an iteration (i, j), where we increase
excess(d) by δi for all d ∈ Sm? . By membership d ∈ I
at iteration (i, j), we have w(d) ≥ 2i + (1− j)δi ≥ 2i−1,
and so δi ≤ 2εw(d). Additionally, by choice of m?,
w(Sm?) ≤ w(I)/`, where ` is the total number of
iterations. Thus, excess(I) increases by at most

δi · |Sm? | ≤ ε
∑

d∈Sm∗

w(d) ≤ εw(I)/`

at iteration (i, j). Summed over all ` iterations, we have
excess(I) ≤ εw(I), as desired. �

We conclude the proof of correctness of Theorem
4.1 by showing that the algorithm meets the sufficient
conditions of Lemma 4.1.

Proof of Theorem 4.1. Condition (ii), regarding small
free weights, follows by Lemma 4.3 (e) and Lemma 4.4.
Condition (iii), that I ∈ Iw1

1 ∩ I
w2
2 , follows Lemma 4.6.

It remains to verify (i), which states that w1 and w2 are
approximately a weight splitting of w.

Consider an element e ∈ N . Let w′(e) = δbw(e)/δc,
where δ = ε2blog w(e)c. The discretized weight w′(e)
rounds w(e) down inside a bucket of width δ ≤ εw(e),
so w′(e) ≥ (1 − ε)w(e). The algorithm maintains the
invariant that w1(e) + w2(e) = w′(e) + excess(e). Since
excess(e) is non-negative, we have w1(e) + w2(e) ≥
w′(e) ≥ (1− ε)w(e), as desired. On the other hand, by
Lemma 4.7, we have w1(I)+w2(I) = w′(I)+excess(I) ≤
(1 + ε)w(I), as desired. �

4.2 Efficiency
Now we turn to proving the running time of
O(nk log2W/ε2) calls to an independence oracle. The
algorithm is clearly bound by `2 = log2(W )/ε2

calls to batch-augment. It remains to prove that
batch-augment runs in O(nk) independence queries.
This is not immediate because we are not given in-
dependence oracles for Mw1

1 and Mw2
2 . The follow-

ing lemma shows that we can nevertheless implement
batch-augment efficiently.

Lemma 4.8. The subroutine batch-augmentcan be im-
plemented with running time bounded by O(nk) calls to
independence oracles forM1 andM2.



Proof. By Remark 2.1, it suffices to show that we can
verify free elements and verify exchanges.

Suppose we call batch-augment with arguments
(Mw1

1 |Ni,j
,Mw2

2 |Ni,j
,I). By Lemma 4.3, all free ele-

ments inMw1
1 |Ni,j have equal w1-weight (2i− (j− 1)δi),

and by Lemma 4.4, all free elements inMw2
2 |Ni,j have

0 w2-weight. By Lemma 3.4, checking if an element is
free in the weight-induced matroids is reduced to an
independence query in the underlying matroids.

For exchange queries, by Lemma 3.3, verifying
an exchange in the weight-induced matroids is only a
comparison of weights beyond verifying the exchange in
the underlying matroids.

Thus, each query can be implemented with a con-
stant number of independence queries to the underlying
matroids. �

4.3 Removing the dependency on W

A low-level adjustment removes the dependency on
W in the running time of scaled-weight-splitting,
achieving the bounds of Theorem 1.1. The adjustment is
similar to that by Duan and Pettie for matching [DP14,
Section 3.3], and we limit ourselves to a sketch. The full
algorithm is given in Figure 3.

The adjustments are made on a per-scale basis. At
scale i, we ignore all elements with weight greater than
ε2i. Let

N−i =
{
e ∈ N : w(e) ≤ 2i/ε

}
, N+ = N \N−,

I− = I ∩N−i , and I+ = I \ Ii

identify which elements have weight above and below the
threshold 2i/ε. LetM1,i =M1/I

+ andM2,i =M2/I
+

contract I+ in each matroid. At scale i, we will augment
I− ∈M1,i ∩M2,i, and combine it with I+ at the end of
the scale to recover I = I+ ∪ I− ∈M1 ∩M2. For each
iteration (i, j), we redefine

Ni,j =
{
e ∈ Ni : w(e) ≥ 2i − (j − 1)δi

}
.

The work at iteration (i, j) is essentially the same, except
we restrict Ni,j , operate in the contracted matroidsM1,i

andM2,i, and augment I− ∈Mw1
1,i ∩M

w2
2,i instead of all

of I. Contracting I+ is trivial to implement and does
not complicate the oracle model.

In this variation, an element participates in
(1/ε) log(1/ε) rounds between the moment it first ap-
pears in N+

i,j and the last time it appears in N−i,j . We
replace ` with (1/ε) log(1/ε) accordingly. This reduces
the running time to meet the bound claimed by The-
orem 1.1. It remains to address the correctness of the
algorithm.

The restriction to N−i removes larger elements from
participating in the augmentation loop or dual update.

The same effect could be achieved by incrementing w1(e)
by 2i for all e ∈ I+ and decreasing w1(e) by 2i for all
e ∈ N+

i \ I+ once at beginning of scale i, for then none
of these elements would be reachable from the source s
in the exchange graph. Adding extra weight to elements
in I and removing extra weight from elements outside
I only strengthens the invariant that I ∈ Iw1

1 ∩ Iw2
2

(Lemma 4.6).
We interpret the restriction to N−i as simulating

these extra adjustments to w1. To prove correctness, we
need to show that for each element e, the sum of these
virtual adjustments to w1(e) is relatively small. Suppose
an element e ∈ I leaves N−i,j at scale i, and accrues
extra w1-weight in increments of 2i

′
for each scale i′ ≥ i.

Because the increments are geometrically decreasing,
and 2i ≤ εw(e), the sum of virtual increments is at most

∞∑
i′=i

2i
′

= 2i
∞∑
m=0

1

2m
≤ 2εw(e).

Similarly, we subtract at most O(εw(e)) from w1(e) for
each e ∈ N \ I. It follows that these virtual adjustments
have a negligible effect on the quality of (w1, w2) as an
approximate weight splitting.

Although we have decreased the length ` against
which we amortize the excess cost, the number of times
an element participates in the weight update stage is
decreased by equal proportion. This allows us to repeat
the proof of Lemma 4.7 for the smaller value of ` and
obtain the same bounds on the excess.

All accounted for, restricting to N−i and filtering out
large elements at each scale i has a negligible cumulative
effect on the conditions required by Lemma 4.1, and the
new algorithm still has a (1−O(ε)) approximation ratio.



lazy-scaled-weight-splitting(N,I1,I2,w,ε)
// we assume 1/ε is an integer and mine∈N w(e) = 1
I ← ∅
b1 ← dlog maxe∈N w(e)e, b2 ← dlog εe, `← dlog 1/εe/ε
for all e ∈ N
w2(e)← 0, excess(e)← 0
δ ← ε2blog w(e)c

w1(e)← δbw(e)/δc
for i = b1 down to b2

// * start of scale i *
δi ← ε2i−1

// exclude sufficiently large elements
N−i ←

{
e ∈ N : w(e) ≤ 2i/ε

}
, N+ ← N \Ni

I− ← I ∩N−i , I+ ← I ∩N+
i

let M1,i =M1/I
+, M2,i =M2/I

+

for j = 1, . . . , 1/ε
// * start of iteration (i, j) *
Ni,j ←

{
e ∈ N−i : w(e) ≤ 1

ε

(
2i − (j − 1)δi

)}
repeat ` times
I− ← batch-augment

(
Mw1

1,i |Ni,j,M
w2
2,i |Ni,j,I

−)
for each m ∈ N, let Sm ⊆ Ni,j be the set of elements whose shortest

path from s in the exchange graph of (Mw1
1,i ∩M

w2
2,i)|Ni,j

has length m

let m? ∈ {2, 4, 6, . . . , 2`} minimize w(Sm?) // Sm? ⊆ I−
for all e ∈ S1 ∪ S2 ∪ · · · ∪ Sm?−1
w1(e)← w1(e)− δi, w2(e)← w2(e) + δi

for all e ∈ Sm?

w2(e)← w2(e) + δi, excess(e)← excess(e) + δi
for all e ∈ Ni \ I− // reset excess for all e ∈ Ni \ I−
w1(e)← w1(e)− excess(e), excess(e)← 0

// * end of iteration (i, j) *
I ← I− ∪ I+

// * end of scale i *
return I

Figure 3: Full details of the algorithm lazy-scaled-weight-splitting
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