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Abstract
We consider several implicit fractional packing prob-
lems and obtain faster implementations of approxima-
tion schemes based on multiplicative-weight updates.
This leads to new algorithms with near-linear running
times for some fundamental problems in combinatorial
optimization. We highlight two concrete applications.
The first is to find the maximum fractional packing
of spanning trees in a capacitated graph; we obtain a
(1− ε)-approximation in Õ

(
m/ε2

)
time, where m is the

number of edges in the graph. Second, we consider the
LP relaxation of the weighted unsplittable flow problem
on a path and obtain a (1−ε)-approximation in Õ

(
n/ε2

)
time, where n is the number of demands.

1 Introduction
Packing, covering, and mixed packing and cover-
ing problems are ubiquitous in combinatorial and
discrete optimization with several important appli-
cations. We are interested in solving fractional
problems that arise directly or indirectly via linear-
programming relaxations of the underlying discrete
formulations. A pure packing problem is the form
max{〈v, x〉 : Ax ≤ 1, x ≥ 0}, where x ∈ Rn, and v ∈
Rn≥0 and A ∈ Rm×n≥0 are non-negative. A pure cover-
ing problem is of the form min{〈v, x〉 : Bx ≥ 1, x ≥ 0},
where v ∈ Rn≥0 and B ∈ Rm×n≥0 are non-negative. A
mixed packing and covering problem is of the form
Ax ≤ 1, Bx ≥ 1, x ≥ 0 where both A and B are non-
negative matrices. There is a large literature on fast
approximation algorithms for solving fractional pack-
ing and covering problems starting with the influen-
tial works of Shahrokhi and Matula [32], Klein et al.
[23], Plotkin, Shmoys, and Tardos [30], Grigoriadis and
Khachiyan [18], Young [37], Garg and Könemann [16]
and many others including recent advances [2]. These
algorithms output a (1±ε)-approximation with running
times significantly faster than the exact algorithms ob-
tained by linear programming. The earlier algorithms
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are largely based on Lagrangian relaxations with expo-
nential penalty functions that can be interpreted in the
multiplicative-weight update framework. They result in
running times of the form O(poly(n)/ε2), where n is the
input size. The 1/ε2 dependence is necessary for algo-
rithms within this framework [22]. Methods that de-
pend on accelerated gradient techniques, such as those
of Nesterov [28], can yield a 1/ε dependence. Until re-
cently, those methods had a worse dependence on other
parameters of the problem.

We distinguish explicit problems where v and A are
given explicitly as part of the input from implicit prob-
lems where v and A are defined implicitly by combi-
natorial objects such as graphs, set systems, and ge-
ometric objects. In an explicit problem, the primary
parameters are the dimension n, the number of con-
straintsm, and the number of nonzeroesN in the matrix
A. For explicit packing and covering problems, Koufo-
giannakis and Young [24] showed that one can obtain a
(1± ε)-approximation in O(N + (m+n) logN/ε2) time.
Young [38] obtained a running time of Õ

(
N/ε2

)
for

mixed packing and covering problems (we use Õ to hide
terms that are poly-logarithmic in the input size and
1/ε throughout this paper). In a recent breakthrough,
Allen-Zhu and Orecchia [2] obtained an Õ(N/ε) ran-
domized running-time for pure packing problems based
on several new ideas. The same paper obtained a run-
time of Õ

(
N/ε1.5

)
for pure covering problems, which

was reduced to Õ(N/ε) in subsequent work by Wang
et al. [35].

The focus in this paper is on implicit problems
where the matrix A is not specified explicitly. Multi-
commodity flow problems are a classic example. The
path formulation of flows, which has a variable for ev-
ery routable path and a constraint for each capaci-
tated edge, is defined implicitly by the underlying graph
and demand pairs. For most graphs the dimension
is exponential in the input size. Fast approximations
for the path formulation via multiplicative-weight up-
dates have been studied extensively in the literature
[32, 23, 30, 16, 26], the latest of which, by Mądry [26],
approximates the maximum multicommodity flow in



time Õ
(
mn/ε2

)
. The dependence on ε can be decreased

to 1/ε at the cost of a higher dependence on the input
size [8, 29].

The simplicity of multiplicative weight update al-
gorithms makes them amenable to the use of efficient
data structures to speed up the computation in each it-
eration. Partly motivated by a deterministic weight up-
date technique from Young [38], and the use of dynamic
data structures by Mądry [26], we consider some classes
of implicit fractional packing problems and obtain sig-
nificantly faster algorithms than previously known. Al-
though we believe that the framework applies to several
other problems including pure covering problems and
mixed packing and covering problems, we focus on a
few well-known packing problems to illustrate the cen-
tral ideas and the necessary details.
Packing spanning trees. Let G = (V, E) be an
undirected graph with non-negative edge capacities c :
E → R≥0. We consider the problem of computing a
maximum fractional packing of spanning trees of G.
Letting T be the family of spanning trees of G, we can
express this as maximizing

∑
T∈T xT subject to xT ≥ 0

for all T ∈ T and
∑
T3e xT ≤ ce for all edges e ∈ E . By

a classical theorem of Tutte [34] and Nash-Williams [27],
the fractional spanning tree packing number is equal to

the strength of G which is defined as minE′⊆E
c̄(E′)
π(E′)−1

where π(E′) is the number of connected components
in G − E′. Network strength has several applications
and efficient algorithms for it have been well studied
[12, 33, 6, 15]. In this paper, we give the following
nearly-linear time approximation scheme.

Theorem 1.1. There is a deterministic Õ
(
m/ε2

)
-time

alogrithm that gives a (1 − ε)-approximation for frac-
tional packing of spanning trees in a capacitated undi-
rected graph with m edges (and hence also to network
strength). This implies that a (1− ε)-approximate pack-
ing can be described in Õ

(
m/ε2

)
space.

The best exact algorithm for fractionally pack-
ing spanning trees comes from Gabow’s work [15] via
his algorithm for packing arboresences, and runs in
O(n3m log(n2/m)) time. As far as we are aware, the
best previously known running time for a (1 − ε)-
approximation in the capacitated setting is Õ(mn/ε2).
For uncapacitated graphs a (1−ε)-approximation can be
obtained in Õ(mc/ε2) where c is the minimum cut value
using standard multiplicative weights methods. Easy
examples show that, even for a (1 − ε)-approximation,
an explicit listing of the spanning trees in the decom-
position requires Ω(n2) space for a graph with O(n)
edges. Hence an implicit representation is necessary to
obtain a near-linear running time. Using cut-preserving

sampling techniques [7], we can further improve the de-
pendence of the running time on m while worsening the
dependence on ε if we only want an estimate of the frac-
tional spanning tree number.

Corollary 1.1. There is a randomized Õ(m+ n/ε4)-
time algorithm that outputs a (1 − ε)-approximation to
the fractional packing number (and network strength)
with high probability.

Previously, Karger [20] showed that network strength
can be estimated in Õ(m+ n3/2/ε4)-time.

Given an undirected graph G = (V, E), the spanning
tree polytope is the convex hull of the chracteristic
vectors of the spanning trees of G in the hypercube
[0, 1]E . The packing algorithm for spanning tree implies
the following approximate separation oracle for the
dominant of the spanning tree polytope.

Corollary 1.2. Given a graph G = (V, E) with span-
ning tree polytope P(T ), and a vector z ∈ [0, 1]E there
is an Õ

(
m/ε2

)
-time algorithm that either correctly out-

puts that z /∈ P(T ), or outputs a packing of spanning
trees into z of value between (1− ε) and 1.

Algorithms for decomposing a point in the spanning
tree polytope into a convex combination of spanning
trees have been used in recent algorithms for approx-
imating TSP in both undirected and directed graphs
[4, 17] (and several subsequent papers).
Connections to computing minimum cuts: The first step
in the near-linear-time randomized global minimum cut
algorithm of Karger [21] is to find a 1−ε

2 -approximate
spanning tree packing with O(log n) trees in the pack-
ing. This step is the only randomized aspect in his
algorithm. We obtain a deterministic near-linear-time
(1 − ε)-approximate packing, however the number of
trees in our decomposition can be large even though the
overall representation size is Õ(m/ε2). It may be possi-
ble to use some data structures to build upon our results
to obtain a fast deterministic linear-time algorithm for
minimum cuts. We also mention that our result yields
a deterministic near-linear time (2 + ε)-approximation
for estimating the minimum cut of a graph. There is
already such an algorithm due to Matula [25] which is
simpler and has a better running time; however, our
algorithm is conceptually very different.

The spanning tree packing problem is a special case
of the more general problem of packing bases in a ma-
troid. We obtain the following approximation algo-
rithms for packing bases in uncapacitated and capac-
itated matroids in the oracle model.

Theorem 1.2. Let M = (N , I) be a matroid with
n elements and rank k, accessed by an independence



oracle that runs in time Q. There is an algorithm that
outputs a (1− ε)-approximation for fractionally packing
disjoint bases of M = (N , I) in time Õ

(
nQ/ε2

)
.

In the capacitated setting a (1 − ε)-approximation for
fractionally packing bases can be found in Õ

(
nkQ/ε2

)
time.

Karger [20] considered (1−ε)-approximate packings
of bases in matroids. He obtained running times of the
form Õ((n + k3/ε5)Q) for estimating the value of the
packing.
Packing intervals and paths. Suppose we are given
n closed intervals I1, . . . , In on the real line specified
by their endpoints Ii = [ai, bi]. Each interval has a
nonnegative value vi and a non-negative size di. We
are also given m points p1, . . . , pm ∈ R on the real line,
and each point pj has a capacity cj > 0. The goal is
to choose a subset of the intervals of maximum value
such that the total size of chosen intervals at any point
is at most the capacity of the point. This is equivalent
to the well-studied unsplittable flow problem (UFP) on
paths. These problems and their variants have been
well-studied in a variety of contexts and have numerous
applications in resource allocation, optical networks,
and routing problems, to name a few [5, 14, 36].

The underlying discrete optimization problem is
NP-Hard if the demands di are different. However, the
special case with unit demands (di = 1 for all i) can be
solved in polynomial time. To see this we can consider
the linear relaxation of the natural integer program
formulation. The LP is of the form maximize 〈v, x〉
subject to Ax ≤ c and 0 ≤ x ≤ 1, where the vector x
has a coordinate xi for each Ii, each row corresponds
to a point pj , and Aij = di if pj ∈ Ii and 0 otherwise.
In the unit demand case, A is totally unimodular and
hence the polyhedron is an integer polyhedron. Arkin
and Silverberg [3] showed that this special case can be
solved in O

(
(m+ n)2 log(m+ n)

)
time by a reduction

to minimum-cost flow. This gives an O
(
n2 log n

)
time

algorithm for the problem of finding a maximum-weight
subset of intervals that is k colorable, which corresponds
to scheduling intervals on multiple machines. Borodin
[9, slide 35] explicitly asked whether there is a FPTAS
for this problem that runs in near-linear time. The
input consists of only O(m+ n) numbers while the
matrix A can have Ω(mn) nonzeroes. Existing methods
that depend linearly on the number of non-zeroes in A
take quadratic time for even a (1 − ε) approximation.
In contrast, we show the following result answering
Borodin’s question in the affirmative.

Theorem 1.3. There is an Õ
(
(m+ n)/ε2

)
-time (1−ε)-

approximation for the fractional interval packing prob-
lem.

We obtain similar time bounds even when there are
additional explicit packing constraints on the intervals
of the form Bx ≤ 1. Our running time in this
case also depends near-linearly on the number of non-
zeroes in B. This is particularly useful when imposing
side constraints which occur frequently in applications.
We can substantially improve the running times of
several LP based approximation algorithms for interval
packing and unsplittable flow problems that have been
considered in the literature; we omit these details in this
version.

Overview of techniques. Our results are built on
three known techniques. At a high-level, we use a
generic multiplicative-weight-based methodology that
builds upon the non-uniform increments idea of Garg
and Könemann [16] which yields a width-independent
running time. The MWU framework reduces the origi-
nal problem to implementing an appropriate oracle for
a simpler subproblem, along with computing the weight
updates for each constraint. For example, the oracle for
packing spanning trees computes the minimum weight
spanning tree in a weighted graph. The second and third
techniques improve the efficiency of the implementation
via appropriate dynamic data structures. The idea of
using dynamic data structures to improve the efficiency
of MWU based algorithms is well-known and has been
used for both implicit and explicit packing problems.
For packing spanning trees, we use dynamic MST data
structures by Holm et al. [19] which maintain the mini-
mum spanning tree in polylogarithmic time per update.
The third and less well-known ingredient is a data struc-
ture for maintaining weights that has been used effec-
tively by Young [38]. This data structure maintains the
weights of the constraints in the MWU algorithm in a
lazy and approximate fashion such that the amortized
update time is small. In the context of minimum span-
ning trees, suppose we add a fractional spanning tree
to the current solution. The MWU framework calls for
the weights of each selected edge to be incremented.
Naively, this update takes O(n) time and would be
the bottleneck of the algorithm, but can be reduced to
Õ
(
1/ε2

)
total time per edge. To achieve this, we borrow

the deterministic update scheme for explicit problems
by Young [38] and demonstrate its wider applicability
to implicit problems where the dimension and/or the
number of non-zeroes can be large. A key to the appli-
cability is that the matrix in many implicit problems is
column-restricted : all the non-zero values in a column
are the same.

In retrospect, our overall scheme is surprisingly sim-
ple. It brings together and clarifies the applicability of
some known high-level ideas to yield new and interesting
results for a variety of basic combinatorial optimization



problems. We believe that our specific results and the
scheme will lead to further applications.

Other related work. There is a large amount of liter-
ature on Lagrangian relaxation methods for obtaining
fast approximation schemes to special cases of linear
programming problems. More recent techniques em-
ploy a variety of powerful techniques from convex op-
timization, interior point methods, and data structures
yielding surprising and powerful improvements to clas-
sical problems such as network flow. It is infeasible to
do justice to this literature in this extended abstract.
This paper is in the line of work that uses multiplica-
tive weight update style algorithms and speeds up the
implementation via data structures and approximate or-
acles. Two recent examples are the paper of Mądry [26]
on speeding up multicommodity flow algorithms via im-
proved shortest path data structures, and Agarwal and
Pan [1] on geometric covering problems via range tree
data structures. We defer a more detailed description
to a longer version of the paper.

Extensions and related problems. Our key obser-
vation is that the amortized time to update weights in
the MWU framework can be made small in various prob-
lems of interest that come from combinatorial optimiza-
tion. This observation applies not only to packing but
also to covering and mixed packing and covering prob-
lems. There are some natural implicit covering prob-
lems such as fractional arboricity (covering edges of a
graph by the smallest number of forests), and covering
points by intervals that we believe can be tackled by
the same methods. Packing intervals is a simple ex-
ample where geometric data structures are useful. The
techniques should apply to other classes of geometric
objects in low-dimensional settings such as boxes, tri-
angles and disks, and to UFP in trees. Finally, there
are several other implicit packing and covering prob-
lems in combinatorial optimization such as fractional
packing of arborescences, solving the Held-Karp TSP
relaxation, packing subject to matroid and knapsack
constraints, covering cuts by spanning trees, etc., which
are amenable to some of the ideas here. We plan to
address these in future work. We believe that we can
also obtain speedups for maximizing the multilinear re-
laxation of submodular functions building on [11]. It is
an interesting question as to whether the dependence of
the running time on ε can be improved to 1/ε for some
of the implicit problems we consider while retaining a
near-linear dependence on the input size.

2 MWU framework
We outline the MWU-based algorithmic framework
for optimization from Chekuri, Jayram, and Vondrák

[11]. The framework in [11] is based on previous ideas
and cleanly isolates the necessary features for dealing
with more complex objectives such as concave and
submodular functions. Although this paper only deals
with the simpler setting of linear packing constraints,
some of our ideas extend to these more sophisticated
settings. That said, consider a pure packing problem of
the form

maximize 〈v, x〉 where Ax ≤ c and x ≥ 0.(2.1)

Roughly speaking, the MWU framework reduces the
packing problem to iteratively solving a simpler opti-
mization problem where there is only one constraint.
The single constraint is a weighted sum of the m given
constraints, and the subproblems are of the form

max 〈v, y〉 where 〈w,Ay〉 ≤ 〈w, c〉 and y ≥ 0.(2.2a)

The weights w ∈ [1,∞)m, initialized to 1/c and only
increasing thereafter, can be interpreted as dual or
Lagrangian variables.

The subproblem (2.2) maximizes a linear objective
with a single packing constraint and no other upper
bounds on the variables. This is a fractional knapsack
problem and an optimum solution is to choose the best
bang-for-buck coordinate

j = arg max
̂∈[n]

v̂
〈w,Aê〉

and set y =
〈w, c〉
〈w,Aej〉

· ej .

Since we are solving a relaxation of (2.1), it is clear that
〈v, y〉 ≥ OPT, where OPT is the value of an optimum
solution to (2.1). The advantage of pure packing (or
pure covering or even mixed packing and covering) is
that the optimum solution y to the relaxed problem
(2.2) can be assumed to have only one non-zero entry,
which allows for significantly faster implementations.

The MWU method adds a fraction of the solution
to the relaxation (2.2), then uses the solution to update
the weights for the next iteration. The process is
governed by two input parameters ε and η. The overall
implementation, given as mwu-template and taken from
Chekuri et al. [11], yields a width-independent running
time by choosing time steps in a careful fashion based
on the idea of non-uniform increments, originally due
to Garg and Könemann [16]. The algorithm tracks
progress by a “time” variable t, which increases from 0
to 1. Time is updated in discrete steps via non-uniform
increments. The weight at time t for constraint i is
denoted w(t)

i .
The following theorem restricts the results of

Chekuri et al. [11] to the simpler linear setting.

Theorem 2.1. If η = lnm/ε and ε < 1/2, the algo-
rithm terminates in O(m ln(m)/ε2) iterations and out-
puts a point x such that 〈v, x〉 ≥ OPT and Ax ≤



mwu-template(v,A,c,ε,η)
w ← 1/c, x← 0, t← 0
while t < 1

j ← arg max
̂∈[m]

v̂〈
w(t), Aê

〉 // find the best bang-for-buck coordinate

y ←
〈
w(t), c

〉〈
w(t), Aê

〉 · ej // y is an optimum solution to the relaxed problem (2.2)

δ ← min

{
min
i

ε

η
· ci
〈ei, Ay〉

, 1− t
}

// such that δAy ≤ ε

η
c

x← x+ δy // add δy to the running solution
for all i ∈ [m] // update weights
w

(t+δ)
i ← w(t) exp(δη〈ei, Ay〉/ci)

t← t+ δ
end while
return x

(1 + O(ε))1. The point x′ = x/(1 + O(ε)) satisfies
Ax′ ≤ c and 〈v, x′〉 ≥ (1−O(ε)) OPT.

The number of iterations depends onm, the number
of constraints, and not on n, the dimension of the
problem. The proof of the preceding theorem is centered
on the sum of weights

〈
w(t), c

〉
. By choosing the step

size δ to be sufficiently small, we ensure that the sum
of weights

〈
w(t), c

〉
grows slowly and in particular that〈

w(t), c
〉
≤
〈
w(0), c

〉
exp((1 + ε)ηt) = m exp((1 + ε)ηt).

Hence
〈
w(t),1

〉
≤ m exp((1 + ε)η) at the end of the

algorithm. Each weight w(t)
i is non-negative, so we

also have w
(t)
i ≤ m exp((1 + ε)η) for each constraint

i. These bounds can then be used to argue that
the final solution x does not violate the constraints
by more than a multiplicative factor of (1 + O(ε)).
To bound the number of iterations, we observe that
the choice of step size guarantees that the weight of
at least one constraint increases by a multiplicative
factor of exp(ε). Each constraint can only increase by
such a multiplicative factor O

(
lnm/ε2

)
times before

reaching the upper bound of m exp((1 + ε)η), and there
are m constraints, so there are at most O

(
m lnm/ε2

)
iterations total1.

Having bounded the total number of iterations, the
key per-iteration steps that determine the final running
time are (i) finding the best coordinate j, and (ii)
updating the weights of all the constraints. The MWU
framework is robust enough for us to approximate these
steps. It suffices to pick a (1 +O(ε))-approximation for

1One can also bound the number of iterations by
O(n ln(m)/ε2). To this end, observe that for a fixed choice of
coordinate j ∈ [n], the constraints that increase by exp(ε) are
always the same. Therefore, a coordinate j ∈ [n] can only be
chosen O

(
lnm/ε2

)
times before its “bottleneck” constraints reach

the upper bound of m exp((1 + ε)η).

the best coordinate j, and to approximate each weight
w

(t)
i to within a (1± ε)-factor of its true value. Taking

advantage of this slack leads to running times of the
form Õ

(
N/ε2

)
[38], where N is the total number of

nonzeroes in A.
In our applications, A is implicitly defined by a

combinatorial optimization problem, and the dimension
and the number of non-zeroes of A may be too large to
apply an algorithm with running time Õ

(
N/ε2

)
directly.

We employ dynamic data structures that take advantage
of the combinatorial construction per the needs of the
MWU framework.

3 Packing spanning trees and bases of a
matroid

We consider the problem of packing bases in a matroid
M defined over a ground set N with n elements. Let
B be the set of bases of M and k the rank of M.
Each base b ∈ B has cardinality k. In the disjoint
base packing problem, we want to find the largest
subcollection S ⊆ B of pairwise disjoint bases. In the
capacitated base packing problem, we equip the ground
set N with positive capacities c : N → R>0, and want
to find the largest collection b1, . . . , bM ∈ B of bases,
possibly repeating, such that each element e ∈ N is
contained in at most ce of the bases.

In this section, we consider linear relaxations of
packing bases. As a linear program, the capacitated
base packing problem can be expressed as

maximize 〈1, x〉(3.3a)
over x : B → R(3.3b)

where
∑
b:e∈b

xb ≤ ce for all e ∈ N ,(3.3c)

and xb ≥ 0 for all b ∈ B.(3.3d)



capacitated-bases(N,B,c,ε,η)
w ← 1, x← 0, t← 0
while t < 1
b← arg min{w(b′) : b′ ∈ B}

γ ← w(N )

w(b)

δ ← εmine∈b ce
ηγ

x← x+ δγb
for all e ∈ b
we ← exp

(
εmine′∈b ce′

ce

)
we

t← t+ δ
end while
return x

This is a packing LP where A is a 0, 1 matrix and
the number of variables |B| may be exponential. It is
well-known that the above LP can be solved exactly in
polynomial time. One way to see this is via the ellipsoid
method, by observing that the separation oracle for the
dual LP is the problem of finding a minimum weight
base inM, which admits a polynomial time algorithm.
Strongly polynomial-time combinatorial algorithms are
known for both fractional and integer packing of bases
as well [31]. However, the running times of these
algorithms are rather high.

Our goal is to find a (1 − ε)-approximation to the
fractional base packing problem. The special case of
packing spanning trees in a graph is a particular focus
because it has several important applications. The
capacitated case requires more machinery and outlines
the need for a combination of data structures to improve
the running time of an MWU-based implementation.
We treat it here. Appendix B considers the unit
capacity setting.

Packing in the capacitated setting. We adapt the
MWU algorithm of Section 2 to the fractional base
packing LP (3.3) in the algorithm capacitated-bases.
There is a variable xb for each base b ∈ B. The number
of constraints is n, corresponding to the capacities on
the elements. The implicit constraint matrix is a {0, 1}-
matrix, where the column corresponding to a base b has
1’s for each element e ∈ b. The number of nonzeroes in
each column is the rank of M, k. Recall that in each
iteration the MWU algorithm picks a single variable
and takes a small step of that variable solution times δ.
This corresponds to picking a base b, and in particular,
the minimum-weight base w/r/t the current weights
on N . Although the number of variables (bases) may
be exponential, the number of constraints is n, so the
MWU algorithm terminates in O(n ln(n)/ε2) iterations.

We first analyze the naive implementation of the

algorithm. The algorithm maintains n weights, one for
each constraint (i.e., for each element in N ). In each
iteration it does following.
1. Compute a minimum weight base b with respect to

the weights w : N → [1,∞).
2. Update the current solution by adding some multi-

ple of b.
3. Update the weight of each of the k elements in b.

Updating the weights takes O(k) time. Computing a
minimum weight base takes O(nQ + n log n) time via
the greedy algorithm, where Q is the cost of a call to an
independence oracle for M. Thus, the overall running
time is O

(
(nQ+ n log n)n/ε2

)
= Õ

(
n2Q/ε2

)
.

The first observation to improve the running time is
to update the weights lazily. Suppose we is the weight
of an element e in the current iteration, and the new
weight after the iteration is w′e. Suppose w′e < (1+ε)we
and say we do not update update the weight as we are
supposed to. This affects the minimum weight base
in the next iteration, but only by a (1 + ε)-factor,
and the resulting approximate minimum-weight base
can be absorbed into the overall approximation factor.
How does this help us? If we only maintain a weight
we approximately to within a (1 + ε)-factor, then the
total number of weight changes of e is O(ln(n)/ε2).
The total number of weight changes of all elements is
O(n ln(n)/ε2). If we also had a dynamic data structure
for maintaining the minimum weight base, then the
number of update operations for that data structure
is only O(n ln(n)/ε2)! There are already very efficient
data structures for maintaining the minimum spanning
tree of a graph [19]. In Appendix A, we develop a data
structure for maintaining the minimum weight base in
a matroid.

By rounding down each weight we to powers of
(1 + ε), we can limit the number of update requests
to the data structure, but we still need to keep track
of the true weights w. In the capacitated setting, the
weights of the updated elements change at different
rates, and visiting each weight requires O(k) time. The
overall running time just to update the weights would
be O(nk ln(n)/ε2); in the case of packing spanning
trees in a graph with m edges and n nodes, this is
Õ
(
mn/ε2

)
. To overcome this barrier, we need to have a

data structure that maintains the weights in amortized
polylogarithmic time per update. We show that this
is feasible in several settings when the matrix A has a
column-restricted structure, such as the one for packing
bases. To make the discussion concrete we focus on the
problem of packing spanning trees. The case of general
matroids is deferred to Appendix A.

Packing Spanning trees. Let G = (V, E) be a
capacitated graph withm edges and n nodes. Let ce > 0



denote the capacity of an edge e. Let T be the set of
spanning trees of G. The spanning trees T are the bases
of the graphic matroid MG and the edges E form the
ground set. Given positive edges weights w : E → R>0,
computing a minimum weight baseMG is precisely the
task of computing the minimum weight spanning tree
of G.

Per the preceding discussion, a fast MWU imple-
mentation requires a dynamic data structure to main-
tain the minimum spanning tree. The data struc-
ture of Holm et al. [19] can maintain the MST under
edge insertions and deletions in O(log4 n) time per up-
date2. Recall that the total number of data updates is
O(m lnm/ε2) if we only update the data structure when
the weight of an edges crosses a power of (1 + ε). Then
the total work over the entire course of the algorithm to
find the MST in each iteration is O(m log5 n/ε2).

The only remaining bottleneck to obtain a nearly
linear running time is the need to update n − 1 edge
weights at the end of each of Õ

(
m/ε2

)
iterations. We

alleviate this bottleneck by extending the techniques
of Young [38]. To motivate the details of the data
structure, we first walk through the details of how the
weights w change in each iteration.

Suppose in the current iteration we select a tree
T . Let c be the minimum capacity of any edge in
T . We first add a (εc/η)-fraction of T to the current
solution. Then the weight of each edge e ∈ T needs
to be increased to exp(εc/ce)we. In particular, the
weight update depends on the ratio of c/ce, and larger
capacity edges growing much more slowly than small
capacity edges. As the tree changes in each iteration,
the minimum capacity changes and with it so does
the rate at which each weight is updated. The key
observation is the following. Suppose we change from
tree T to a new tree T ′. The rates of all the edges
common to both T and T ′ change, but uniformly by the
same factor. This is precisely due the fact that the non-
zero coefficients in each column of the packing matrix
A are identical. Of course, in this case it is even simpler
because A is a 0, 1 matrix, but column-restrictedness
suffices and will be used in the next section. In contrast,
if A is arbitrary, then when the selected column changes
to j, the rate at which the weight of a constraint for row
i changes will also depend on the coefficient Aij .

2This bound can be improved slightly because we only increase
weights of edges to powers of (1 + ε) from 1 to O

(
m1/ε

)
. More

precisely, one can apply the decremental data structure of Holm
et al. [19] to O

(
log(n)/ε2

)
copies of each edge. Each copy of an

edge has its weight set to a power of (1 + ε). When the weight
of an edge e (in the MWU framework) increases from (1 + ε)i to
(1 + ε)i+1, we delete the copy of e with weight (1 + ε)i from the
data structure. This brings the running time down to O

(
log2 n

)
per weight update, and O

(
m log3(n)/ε2

)
overall.

Our goal is to build a data structure that adaptively
maintains the weights of the edges as they grow at
different rates. A key feature is that it should enable an
efficient way to change the rate of all the edges currently
in the data structure by a common scaling factor,
without individually examining all of them. The data
structure should respond to an increment by outputing
all edges whose weights have increased by more than
(roughly) a (1 + ε)-factor. One can do this in amortized
poly-logarithmic time per update. We describe below
the high-level interface of the data structure and the
simple idea behind its implementation, and leave the
finer details to the appendix. After that we describe
the algorithm for packing spanning trees by combining
the use of the two data structures.
A data structure for lazy weight increments.
The lazy-incs data structure approximates a dynamic
set of counters that increment concurrently at different
rates3. The interface for lazy-incs is given on page
8. In the applications of this paper, we use lazy-
incs to track the “additive part” vi = 1

ε ln(wi) for
each constraint i. The rate of each counter i is
stored as rate(i). The primary operation of lazy-
incs is inc(ρ), which simulates the increments for one
increment at the rate ρ. For each i tracked by the data
structure, inc(ρ) (approximately) adds rate(i)/ρ to
the counter for i4. The salient point of lazy-incs is
that it makes the increments in an amortized fashion,
where the total work is proportional to the sum of all
increments. In exchange for better amortized efficiency,
the counters are approximated to a constant additive
factor of their true values. Note that if we can estimate
vi = ln(wi)/ε to an additive factor of O(1), then we can
estimate wi = exp(εvi) to a (1 ± O(ε))-multiplicative
factor, which suffices for our applications.

At a high level, lazy-incs buckets the counters
by rounding up each rate to the nearest power of 2.
For each power of 2, an auxiliary counter is maintained
(more or less) exactly and efficiently. The auxiliary in-
crements at rates that are powers of 2 can be maintained
in constant amortized time for the same reason that a
binary number can be incremented in constant amor-
tized time. Whenever an auxiliary counter increases
by a whole counter, the tracked counters in the corre-
sponding bucket are increased proportionately. Up to

3The data structure we describe is essentially borrowed from
the scheme in [38]. We isolate a clean interface so that it can used
effectively in a modular fashion. The interval packing application
also demonstrates the utility of a unified interface.

4Technically, inc(ρ) tries to increase counter i only if
dlog rate(i)e ≤ dlog ρe. In all applications in this paper, ρ is
always greater than or equal to rate(i) for any constraint i being
tracked.



Lazy Increments: Interface

Operations Description

lazy-incs(ζ) Initializes the lazy-incs data structure with error parameter ζ ∈ (0, 1).

insert(i,ρ) Given an integer i ∈ N identifying a weight and a positive rate ρ ∈ R>0, begins tracking
increments to the weight i at the rate ρ.

delete(i) Given an identifying integer i ∈ N, stops tracking increases to weight i. Returns a left over
increment δ ∈ R≥0 to be committed to weight i.

inc(ρ) Given a value ρ, simulates an increase at the rate of the fastest weight being tracked. Returns
a list of couples (i, δ), where i ∈ N identifies a weight and δ > 0 is an positive increment to
commit to weight i.

accounting details, this tracks the increments to each
counter to within a constant additive factor at all times.
A detailed implementation of the operations of lazy-
incs and a full proof of the following theorem are de-
ferred to Section 5.

Theorem 3.1. Consider an instance of lazy-incs(ζ)
over a sequence calls to inc, insert, and delete. Let
M ∈ N be the total number of calls to inc, I ∈ N be the
number of calls to insert, and D ∈ N the total number
calls to delete. For each constraint i, let ṽi be sum
of increments for constraint i confirmed in the return
values of calls to inc, and let Di be the number of times
constraint is deleted. Then lazy-incs(ζ) maintains ṽi
to within a O(1+Diζ) additive factor of the true number
of increments for constraint i. The total time over all
operations is Õ(M + (I +D) log(1/ζ) +

∑
i Vi), where

Õ hides logarithmic factors in M + I +D.

Putting it all together. With lazy-incs in tow,
we can assemble the complete algorithm capacitated-
spanning-trees, given on page 9. Recall that by
dynamically maintaining the minimum weight spanning
tree with respect to an approximate set of weights that
updates infrequently, the only obstacle is updating the
weights for all n− 1 edges of the selected tree in each of
Õ
(
m/ε2

)
iterations. At the beginning of the algorithm,

we instantiate an instance of the lazy-incs(ζ) data
structure with ζ ≈ ε2, and call insert on each edge
of the first minimum spanning tree. The rate for each
edge e, per the MWU template, is the reciprocal of its
capacity, 1/ce. The data structure for the minimum
spanning tree and the lazy-incs data structure mirror
one another. When one edge is replaced by another
in the minimum spanning tree, a matching delete
and insert is made to lazy-incs. When lazy-incs
commits a full increment to an edge e, the weight change
is propagated to the dynamic minimum spanning tree,
which may decide to replace that edge with another.

The total number of updates to either data structure is
O
(
logm/ε2

)
per edge. This gives Theorem 1.1.

The running time of Theorem 1.1 is approximately
linear in the number of edges despite the fact that the
algorithm returns a weighted combination of Õ

(
m/ε2

)
spanning trees each consisting of n − 1 edges. This
output alone suggests a minimum running time of
Ω̃
(
mn/ε2

)
. capacitated-spanning-trees beats this

lower bound by taking advantage of high overlap be-
tween one spanning tree and the next. Surprisingly,
Theorem 1.1 implies that a (1 − ε)-approximation to
fractionally packing spanning trees can be described in
Õ
(
m/ε2

)
bits (times the bit complexity of the edge

weights).

4 Packing intervals
We consider the fractional interval packing problem
defined as follows. Let I be a set of n intervals on
the real line, where each interval I ∈ I is defined by its
two endpoints I = [α, β]. Let P be a set of m points on
the real line. Each interval I ∈ I has a positive value
vI > 0 and a positive size dI > 0. Each point p ∈ P has
a positive capacity cp > 0. We want to

maximize 〈v, x〉(4.4a)
over x : I → R≥0(4.4b)

subject to
∑

I∈I:p∈I
dIxI ≤ cp for all p ∈ P.(4.4c)

Several applications impose the constraint that xI ≤ 1
for each I. We discuss this extension later in Section 4.1
when we append an additional set of packing constraints
Bx ≤ 1 to the above LP (4.4).

The interval packing problem is different from the
base packing problem (3.3) in that the number of
dimensions/variables, n, is linear in the input size. In
that sense the problem is explicit. The difficulty lies
in the fact that each interval can contain many more
points than its two end points. If we take the number of



capacitated-spanning-trees(G = (V, E),c,ε,η)
w̃ ← 1, x← 0, t← 0
T ← dynamic minimum weight spanning tree w/r/t w̃
I ← lazy-inc(Θ

(
ε2/ logm

)
)

for all e ∈ T
I.insert(e,1/ce)

while t < 1

γ ←
∑
e∈N w̃e∑
e∈T w̃e

δ ← εmine∈T ce
ηγ

x← x+ δγT // add to the running solution
∆← I.inc(1/min

e∈T
ce) // increment all the edges in T

for each increment (e, ξ) ∈ ∆
w̃e ← exp(εξ)w̃e // apply the increment to w̃e
if T replaces e with an edge f
ξ′ ← I.delete(e) // remove e from the lazy-incs data structure
w̃e ← exp(εξ′)w̃e // apply any residual increment
I.insert(f,1/cf) // insert f into the lazy-incs data structure

end if
end for
t← t+ δ

end while
return x

points in each interval, and sum them up, then the total
number of point-interval relations, which corresponds to
the number of non-zeroes in the packing matrix A, may
be Ω(mn). To obtain a nearly linear running time in the
input - which has size O(m + n) - we cannot afford to
visit every point for every interval. That is to say that
the implicit packing matrix A is too dense for a nearly-
linear time algorithm to even write down explicitly.

If we apply the MWU framework to the fractional
interval packing problem (4.4), we obtain the algorithm
intervals. The MWU framework instantiates a weight
wp for each point p ∈ P. For each interval I, let the
weight of I be the sum of weights over the points con-
tained in I, w(I)

def
=
∑
p∈P∩I wp. The algorithm repeat-

edly finds an interval with approximately maximum ra-
tio of value to size-times-weight. After choosing an in-
terval I, it adds a fraction of I to the running solution
and then increments the weight of every point p ∈ P ∩I
in proportion to its capacity.

Per the MWU framework, intervals runs in
Õ
(
m/ε2

)
iterations. To keep our running time near-

linear, we need to (approximately) compute the weight
w(I) of an interval I, update the weight wp of each
point p ∈ P ∩ I, and find the best bang-for-buck in-
terval arg maxI∈I vI/w(I) efficiently. By “efficiently”,
we mean that an operation should either run in Õ(1)
worst-case time, or Õ

(
(m+ n)/ε2

)
total time over the

intervals(P,c,I,v,ε,η)
w ← 1, x← 0, t← 0
while t < 1
choose I ∈ I s.t.

vI
dIw(I)

≥ (1− ε) max
J∈I

vJ
dJw(J)

γ ←
∑
p∈P wpcp
dIw(I)

δ ← ε

ηγdI
· min
p∈I∩P

cp

x← x+ δγI
for all p ∈ P ∩ I
wp ← wp exp

(
εminq∈I∩P cq

cp

)
t← t+ δ

end while
return x

course of the algorithm, where Õ hides polylogarithmic
factors in m, n, and 1/ε.

We take advantage of the simple geometry of the
problem and the column-restricted nature of the matrix.
We integrate the lazy-incs data structure into a range
tree over the points to maintain the weights efficiently.
We also need another standard bucketing trick to choose
the approximately best interval in each iteration.

The augmented range tree data structure. Let T



be a balanced binary tree whose leaves are the points P
in sorted order. T has O(logm) levels. For each node
ν ∈ T , let Tν denote the subtree of T rooted at ν and
let Pν denote the points at the leaves of Tν .

An input interval I = [α, β] ∈ I traces two
paths of length O(logm) from the root of T down
to leaves (in the figure on the above, the edges on
these paths are drawn solid). The two leaves may
or may not be in I. Every other subtree Tν that
hangs off these paths, and lying between the paths,
has all its points Pν in the interval I. That is,
each interval is the disjoint union of the (leaves of
the) maximal subtrees contained in I, and there are
O(logm) such subtrees that can all be retrieved in
O(logm) time (filled in in the picture below). When
an interval contains all the points of such a subtree,
we hope to perform a single aggregate operation at
the root instead of visiting every leaf individually.

I

At each node ν ∈ T we store several quantities of
interest. We store the minimum capacity among Pν ,
and maintain a value W̃ (ν) that approximates the sum
of weights of Pν to within a (1±ε)-factor. We also store
a lazy-incs data structure at each ν which is initialized
statically with Pν ; in this application, there is no need
to delete a point from the data structure. A point p ∈ P
is inserted into O(logm) lazy-incs data structures, so
we maintain a single weight w̃p for each point p ∈ P to
aggregate its increments. The exact interaction between
w̃ and the lazy-incs data structures requires a bit more
care and will be explained later. The total storage for
all the data structures is O((m + n) log2(m + n)) and
initialization takes O((m+ n) log2(m+ n)) time.

We now describe how each of the crucial steps in
the MWU framework can be implemented to obtain the
desired nearly-linear running time.

Computing the weight of an interval. The weight
of an interval I is the sum of weights of the leaves of the
maximal subtrees contained in I. As mentioned above,
for each node ν, the data structure maintains a value
W̃ (ν) that approximates the sum of weights of Pν . If
W̃ (ν) is a (1±O(ε))-approximation for the (true) sum of
weights w(P)η, then the sum of W̃ (ν) over all maximal
subtrees Tν contained in I is a (1±O(ε))-approximation
of the true weight of I. If each approximate sum

W̃ (ν) is already computed, then the weight of I can
be approximated in O(logm) time.

Whenever a weight w̃p is increased by a lazy-inc
data structure, we visit every subtree Tν containing p
and increase W̃ (ν) by the same amount. Since w̃p is a
(1±O(ε))-approximation of wp, and W̃ (ν) is the sum of
w̃p over p ∈ Pν , W̃ (ν) is a (1 ± O(ε))-approximation
of the sum of weights w(Pν). Thus, we can charge
the total cost of updating the W̃ (ν) values to the total
number of weight updates of the points. As we have
seen previously, the total number of weight updates is
Õ
(
m/ε2

)
.

Incrementing the point weights of an interval. In
each iteration we add a fraction of the chosen interval I
to the running solution and need to update the weights
of the points in I ∩ P. Recall that for every node
ν ∈ T , we maintain an instance of the lazy-incs data
structure. At the start of the algorithm we instantiate
it with lazy-incs(0) and for each point p ∈ Pν we
call insert(p,logm/cp). (When we insert before any
increments, insert takes constant time.)

After adding some a fraction of I to the solution,
we update the weights as follows. Let c = minp∈P∩I cp.
We visit the root ν of every maximal subtree contained
in I and call inc(logm/c) on its lazy-incs instance.
For every pair (p, δ) returned in inc, where p ∈ Pν and
δ > 0 registers an increment to p, we increase w̃p by a
multiplicative factor of exp(εδ/ logm).

The alert reader may wonder why we use a rate
of logm/cp for point p instead of 1/cp and how it
affects the running time. The reason is that each
point p ∈ P has increments counted by O(logm)
instances of lazy-incs. When we increment weights
for an interval I containing p, an increment is registered
in exactly one of these data structures; namely, that
corresponding to the unique maximal subtree of I
containing p. Since O(logm) different lazy-incs data
structures contribute to the weight of a point p, each
data structure needs to commit refined increments at
a higher rate to ensure that the total error over all
data structures for p does not exceeds an additive O(1)
factor. By scaling up the rates by logm and scaling
down the increments by logm, each data structure
reports respective increments to p to within an additive
factor of O(1/ logm) (instead of O(1)). Since there
are O(logm) such data structures, the sum of reported
increments is within an O(1) additive factor of the
true total. It follows that w̃p, which maps the sum of
reported increments ∆ to exp(ε∆), is within a (1±O(ε))-
multiplicative factor of the true weights.

By increasing the sensitivity of the lazy-incs data
structures by logm, each “full” increment to w̃ may



be as small as 1/ logm. Consequently we examine the
weight of each point p an O(logm) factor more times,
increasing the running time by an O(logm) factor.

Lazily finding the maximum ratio interval. The
final issue to be dealt with is approximating best interval
in each iteration. Recall that we want to pick the
interval J with the maximum ratio vJ

dJw(J) . Let αJ
denote this ratio for interval J , and note that αJ
changes only because of changes to w(J). We use a
lazy bucketing scheme for this purpose which amortizes
the cost of updating αJ . The intervals are placed in
buckets. Bucket i has all intervals whose αJ value is
between (1 + ε)i and (1+ ε)i+1. The non-empty buckets
are maintained in a linked list. In each iteration, we take
an arbitrary interval I from the bucket i with largest
index, and recompute the weight of I. If the ratio for
I still lies in the range of the bucket, then we take I as
an approximately maximum ratio interval. Otherwise,
we reassign I to a lower bucket according to the newly
computed weight. This way, each computation of
the weight of an interval can either be charged to an
iteration, or charged to an interval going to a lower-
index bucket. As the weight of an interval ranges from
1 to mO(1/ε), each interval only goes through about
Õ
(
1/ε2

)
buckets. Thus, the total number of times we

need to recompute the weight of an interval over the
course of the algorithm is Õ

(
(m+ n)/ε2

)
, and each such

computation takes O(logm) time.

4.1 Additional packing constraints for intervals
The interval packing problem considered above had
constraints only based on the capacities c of the points.
The formulation did not allow simple upper bounds on
xI . It is not hard to extend the analysis to handle
such simple constraints. Our goal here is to show that
one can achieve more, and point out some applications.
We consider the interval packing problem where, in
addition to the capacity constraints imposed by the
points, we have an additional set of packing constraints
on the xI variables in the form of an explicit matrix
Bx ≤ 1. We give one motivating application. In
resource allocation problems [5], a job/task J consists
of several intervals, each of which may have a different
profit. A job requires only one of its intervals to be
done; equivalently, the profit obtained from a task is the
maximum of the profits of the intervals in the task that
are scheduled. This can be seen as a partition matroid
constraint on the set of intervals. A natural way to
model this problem is to add, for each job/task J , the
constraint

∑
I∈J xI ≤ 1. Generalizations have been

studied under the label bag-constrained UFP in paths
and trees [13, 10]. Scheduling interval jobs on multiple

intervals’(P,c,I,d,B,ε,η)
w ← 1, w′ ← 1, x← 0, t← 0
while t < 1

I ← arg max
J∈I

vJ
dJw(J) + 〈w′, BJ〉

γ ← 〈w,1〉+ 〈w′,1〉
dIw(I) + 〈w′, BI〉

κ← min

{
min
p∈I∩P

cp
dI
, min
i′∈[m]

1

〈ei′ , BI〉

}
δ ← εκ

ηγ
x← x+ δγI
for all p ∈ P ∩ I
wp ← wp · exp

(
εκdI
cp

)
for all i′ ∈ [m′]
w′i′ ← w′i′ · exp(εκ〈ei′ , BI〉)

t← t+ δ
end while
return x

unrelated machines can also be modeled in this fashion.
Formally, the problem we have is of the form

maximize 〈v, x〉(4.5a)
over x : I → R≥0(4.5b)

subject to
∑
I:p∈I

dIxI ≤ cp for all p ∈ P(4.5c)

and Bx ≤ 1,(4.5d)

where B ∈ Rm
′×I is an arbitrary non-negative matrix.

Let N ′ be the number of non-zeroes in the matrix B.
In the motivating example above, N ′ = O(n). The
algorithm intervals easily extends to obtain a (1− ε)-
approximation to this fractional packing problem in
Õ
(
(N ′ +m+ n)/ε2

)
time.

A direct implementation of the MWU framework is
given on the right as intervals’; a detailed implemen-
tation is given as intervals” at the end of the section.
As intervals” is more complicated than intervals,
we go through the details gently at the cost of some re-
dundancy. As we describe how to manage the additional
packing constraints B, this will also give us a chance to
review how to manage explicit packing constraints de-
terministically in time proportional to the nonzeroes.

We maintain two weight vectors. The first vector,
w : P → [1,∞), has one weight for each point capacity
constraints. The second, w′ : [m′] → [1,∞), has one
weight for each constraint in B. The point weights w
are managed by an augmented range tree as in Section
4. The weights w′ are managed in a straightforward



intervals”(P,c,I,d,B,ε,η)
w̃ ← 1, w′ ← 1, x← 0, t← 0
let R be a range tree over P
for each node ν in R
let Pν be the points in the leaves of ν

W̃ (ν)← |Pν |
ν.L← lazy-inc(ζ)

for ζ =
ε2

(m+m′) log(m+m′)
for all p ∈ Pν
ν.L.insert(p,1/cp)

end for
while t < 1
I ← interval approx. maximizing the ratio

vI
dI
∑
p∈P∩I w̃p + 〈w′, BI〉

let V be the roots of the O(logm) maximal
subtrees contained in I

γ ←
∑
p∈P w̃e +

∑
i′∈[m′] w̃i′∑

ν∈V W̃ (ν) + 〈w′, BI〉
κ← min

{
min
p∈I∩P

cp
dI
, min
i′∈[m]

1

〈ei′ , BI〉

}
δ ← εκ

ηγ
x← x+ δγI
for each root ν of a maximal subtree of R

contained in I
∆← ν.L.inc(logm/κdI)
for each increment (p, ξ) ∈ ∆
w̃p ← exp(εξ/ logm)w̃p
for all ν′ ∈ R with p ∈ Pν′

update W̃ (ν′)
end for

end for
for all i′ ∈ [m′] with Bi′,I 6= 0
w′i′ ← w′i′ · exp(εκ〈ei′ , BI〉)

t← t+ δ
end while
return x

fashion with no data structures5. Each iteration, we
select an interval I that (approximately) maximizes the
ratio vI/(dIw(I) + 〈w′, BI〉). The selection is done by
lazy bucketing. We add a fraction of I to the running
solution and need to update the weights w and w′. To
update the weights for the point capacities, we visit the
root ν of each of O(logm) maximal subtrees contained
in I, and call inc on the lazy-inc data structure stored
there. The remaining weights w′ are updated directly
by incrementing the weight of each constraint i′ with

5One can also apply techniques by Young [38] to manage w′.

Bi′,I 6= 0 by the exact amount dictated by the MWU
framework.

Between the point capacities and the packing con-
straints B, there are now m + m′ constraints, hence
Õ
(
(m+m′)/ε2

)
iterations total. The total number

of increments committed by inc is Õ
(
(m+m′)/ε2

)
,

hence so is the total amount of time spent increment-
ing weights by Theorem 3.1. As noted in the foot-
note in Section 2, each interval I can only be selected
O
(
ln(m+m′)/ε2

)
times. A weight w′i′ corresponding to

the i′th row of B is incremented only when an interval
I with Bi′,I 6= 0 is visited. Thus, the total time spent
incrementing the weights w′ is at most Õ

(
N ′/ε2

)
.

The total work spent selecting the best interval in
each iteration is amortized by lazy bucketing. In this
setting, we draw an interval I from the highest bucket,
and we have to recompute the ratio vI/(dIw(I) +
〈w′, BI〉). We extract the point weight w(I) from the
augmented range tree in O(logm) time, as in Section 4.
Since the total number of times we need to recompute
the ratio of an interval is Õ

(
(m+m′ + n)/ε2

)
, the total

time spent collecting values from the augmented range
tree is Õ

(
(m+m′ + n)/ε2

)
. To compute 〈w′, BI〉, we

simply visit every nonzero entry Bi′,I 6= 0 in I’s column
in B to compute the weighted sum 〈w′, BI〉. For a
fixed interval I, we only select I or demote I to a
lower bucket O

(
ln(m+m′)/ε2

)
times over the entire

algorithm. Consequently, we only visit a nonzero entry
Bi′,I 6= 0 in I’s column at most Õ

(
1/ε2

)
times. Summed

over all intervals I ∈ I, the total time spent computing
weight sums of the form 〈w′, BI〉 is Õ

(
N/ε2

)
. Thus,

the total time spent recomputing ratios for the lazy
bucketing scheme is Õ

(
(m+ n+N ′)/ε2

)
. This gives

the following overall running time.

Theorem 4.1. Let P be a set of m points with positive
capacities c ∈ RP , and I a set of n intervals with
positive sizes d ∈ RI>0 and values v ∈ RI>0. Let
B ∈ Rm

′×I
≥0 be a positive matrix with N ′ nonzeroes.

Then there is an Õ
(
(N ′ +m+ n)/ε2

)
-time (1 − ε)-

approximation for the fractional augmented interval
packing problem (4.5a).

5 Lazy increments
In this section, we give implementation details for
the lazy-incs data structure and prove the bounds
of Theorem 3.1. The data structure is based on
the deterministic update scheme of Young [38]. In
particular, we implement a clean and isolated interface
that allows for more dynamic settings and simplifies the
reasoning when used in more complex combinations,
such as the augmented range tree data structure of
Section 4. A brief introduction that discusses the



lazy-incs(ζ)
incs← 0Z (allocated lazily)
rem← 0Z (allocated lazily)
depth← dlog 1/ζe

insert(i,ρ)
rate(i)← ρ
`← dlog ρe
W (`)←W (`) ∪ {i}
frac-incs(i)← −apx-rem(`)

delete(i)
`← dlog rate(i)e
δ ← (frac-incs(i) + apx-rem(`)) · rate(i)

2`
rate(i)← 0
W (`)←W \ {i}
return δ

inc(ρ)
`← dlog ρe
rem(`)← rem(`) +

ρ

2`
return flush(`)

apx-rem(`)

return
λ=`+depth∑

λ=`

rem(λ) · 2`−λ

flush(`)
∆← ∅
if rem(`) ≥ 1
δ ← brem(`)c
rem(`)← rem(`)− δ
incs(`)← incs(`) + δ
for i ∈W (`)
frac-incs(i)← frac-incs(i) + δ
if frac-incs(i) ≥ 1
δ′ ← bfrac-incs(i)c
frac-incs(i)← frac-incs(i)− δ′

∆← ∆ ∪
{(

i, δ′ · rate(i)

2`

)}
end if

end for

rem(`− 1)← rem(`− 1) +
δ

2
∆← ∆ ∪ (flush(`− 1))

end if
return ∆

full-rem(`)
return

∑
λ≥`

rem(λ) · 2`−λ

full-incs(`)
return incs(`) + full-rem(`)

intuition of the lazy-incs data structure is provided
in Section 3.

The careful reader might notice that two functions,
full-rem(`) and full-incs(`), are not needed to
implement the API. full-rem(`) gives an exact account
of the total number of fractional increments for level `,
where a fractional increment in the larger level ` + 1
contributes half of a fractional increment to the total
for level `, and so on. full-incs(`) then counts the
exact total number of increments to level ` by adding
incs(`) to full-rem(`). Although immaterial to the
implementation, the values of full-incs(`) and full-
rem(`) are relatively stable and easy to analyze. The
actual operations are then analyzed relative to these
values.

The first lemma untangles flush by showing that
it preserves full-incs(`) for all `.

Lemma 5.1. For any two levels `1, `2 ∈ Z, flush(`1)
does not change the value of full-incs(`2).

Proof. flush(`1) only modifies rem(λ) and incs(λ) for
λ ≤ `1, and full-incs(`2) is a function of rem(λ) and
incs(λ) for λ ≥ `2. If `2 > `1, then these sets of values

are disjoint, and the claim holds.
Suppose `1 ≥ `2. If incs(`1) ≥ 1, then flush(`1)

transfers some δ > 0 from rem(`1) to incs(`2), adds
half of δ to rem(`1 − 1), and then recursively calls
flush(`1 − 1). By induction on `1 − `2, the recursive
call to flush(`1 − 1) preserves full-incs(`2), and it
suffices to analyze the changes before the recursive call.

Let incs′ and rem′ fix the values of incs and rem
before the transfer of δ, and let incs′′ and rem′′ fix the
values of incs and rem after the transfer. incs′ and
rem′ equal incs′′ and rem′′ almost everywhere, except
incs′′(`1) = incs′(`1) + δ, rem′′(`1) = rem′(`1)− δ, and
rem′′(`− 1) = rem′(`− 1) + δ/2. If `1 = `2, then before
the transfer full-incs(`2) equals

incs′(`2) + rem′(`2) +
∑
λ>`2

rem′(λ)2`2−λ

= (incs′′(`2)− δ) + (rem′′(`2) + δ) +
∑
λ>`2

rem′′(λ)2`2−λ

= incs′′(`2) + rem′′(`2) +
∑
λ>`2

rem′′(λ)2`2−λ,

which equals full-incs(`2) after the transfer of δ, as



desired. If `1 > `2, then before the transfer, we have,

full-incs(`2)

= incs′(`2) + rem′(`1 − 1) · 2`2−(`1−1) + rem′(`) · 2`2−`1

+
∑
λ≥`2

λ/∈{`1,`1−1}

rem′(λ) · 2`2−λ

= incs′′(`2) +

(
rem′′(`1 − 1) +

δ

2

)
· 2`2−(`1−1)

+ (rem′′(`)− δ) · 2`2−`1 +
∑
λ≥`2

λ/∈{`1,`1−1}

rem′′(λ) · 2`2−λ

= incs′′(`2) + rem′′(`1 − 1) · 2`2−(`1−1)

+ rem′′(`) · 2`2−`1 +
∑
λ≥`2

`2 /∈{`1,`1−1}

rem′′(λ) · 2`2−λ

which equals full-incs(`2) after the transfer, as de-
sired. �

The next lemma shows that inc increases full-incs(`)
by the correct amount if full-incs(`) counted the
number of increments to a weight that incremented at
the rate 2`.

Lemma 5.2. Let ρ > 0 and ` = dlog ρe. For all levels
λ ≤ `, inc(ρ) increases full-incs(λ) by 2λ/ρ.

Proof. inc(ρ) increases rem(`) by ρ/2` and then calls
flush(`). By Lemma 5.1, flush(`) does not affect
full-incs(λ), so it suffices to consider the increment
to rem(`). Let rem′ denote the value of rem before the
increase and let rem′′ denote the value of rem after.
Before the increment, we have

full-incs(λ)

= incs′(λ) +
∑
µ≥λ
µ6=`

rem′(µ)2λ−µ + rem(`)2λ−`

= incs′′(λ) +
∑
µ≥λ
µ6=`

rem′′(µ)2λ−µ +

(
rem′′(`)− 2`

ρ

)
2λ−`

= incs′′(λ) +
∑
µ≥λ

rem′′(µ)2λ−µ − 2λ

ρ
,

which is the value of full-incs(λ) after the update
minus the claimed difference 2λ/ρ. �

The previous lemma shows that inc increments each
full-incs(`) by exactly the right amount. The fol-
lowing lemma argues that we approximately track the
number of increments for each weight i, by arguing that
the committed increments to weight i are closely cou-
pled with the increments to full-incs(dlog rate(i)e).

Lemma 5.3. Let weight i be tracked continuously by the
data structure in level ` = dlog rate(i)e without being
deleted. Consider the sum Φ + V , where V is the total
number of increments committed by the data structure
to i (communicated in the return values of inc), and Φ
is defined to be

Φ
def
= (frac-incs(i) + full-rem(`)) · rate(i)

2`
.

Then
(a) For any level `′, flush(`′) does not change the sum

V + Φ.
(b) A call to inc(ρ) for ρ ≥ rate(i) increases the sum

V + Φ by rate(i)
ρ .

(c) When i is inserted, we have Φ ≤ ζ. After each
inc, Φ ≤ 3. In particular, after a sequence of K
increments at rates of ρ1, . . . , ρK ≥ rate(i), V is
within an additive factor of 3 of

∑K
k=1 rate(i)/ρk.

(d) Suppose i is deleted after a sequence of K in-
crements at rates of ρ1, . . . , ρK with dlog ρke ≥
dlog rate(i)e for each k, and the call to delete(i)
returns an increment of δ. Then V + δ is within an
additive factor of ζ of

∑K
k=1 rate(i)/ρk.

Proof. (a) Consider the “immediate” part of flush(`′)
executed before the recursive call to flush(` − 1) (if
any). It suffices to show that the immediate parts of
each flush do not change the sum V +Φ. If `′ < `, then
this work does not change commit any weight to i, and
any change to rem(`′) is not included in the computation
to full-rem(`). Thus, the immediate part of flush(`′)
has no impact on V + Φ for all `′ < `.

If ` = `′, then flush(`′) may delete δ > 0
weight from rem(`), hence decrease full-rem(`) by
δ. The same quantity δ is added to frac-incs(i).
Then flush(`′)may decrease frac-incs(i) by a second
quantity δ′ > 0, and in turn δ′ · rate(i)/2` is added to
V . Thus, full-rem(`) decreases by δ, frac-incs(i)
increases by δ − δ′, and V increases by rate(i)/2`.
Altogether, some value may shift from Φ to V , but the
sum Φ + V remains fixed.

Finally, if `′ > `, then the immediate part of
flush(`′) may decrease rem(`′) by some δ > 0, but
then it increases rem(`′ − 1) by δ/2. Since `′−1 ≥ `, this
results in no change in full-rem(`), hence no change
in the sum Φ + V .

(b) Let `′ = dlog ρe. inc() increases rem(`′) by ρ/2`
′

and then calls flush(`′). The addition to rem(`′) in-
creases full-rem(`) by

(
2`

′
/ρ
)
·2`−`′ = 2`/ρ, which in

turn increases Φ by
(
2`/ρ

)
·
(
rate(i)/2`

)
= rate(i)/2`.

By part (a), the remaining call to flush(`′) does not
affect the sum Φ +V . Thus, the total increase in Φ +V
is rate(i)/2`, as desired.



(c) Since apx-rem(`) ≤ full-rem(`) ≤ apx-rem(`) +
ζ, and frac-incs(i) is initialized to −apx-rem(`), we
have Φ ∈ [0, ζ] when i is inserted. By design, the data
structure keeps rem(`′) ∈ [0, 1] for all levels `′, which im-
plies that full-rem(`′) ∈ [0, 2) for all levels `′ as well.
The data structure also keeps frac-incs(i) in the range
−full-rem(`′) ≤ −apx-rem(`′) ≤ frac-incs(i) ≤ 1.
Thus, Φ always lies in the range 0 ≤ Φ < 3 ·

(
δ/2`

)
≤ 3.

(d) Fix V and Φ to just before the call to delete(i).
By (b), we have V + Φ =

∑K
k=1 rate(i)/ρk +η for some

η ∈ [0, ζ]. Furthermore,

Φ− δ = (full-rem(`)− apx-rem(`)) · rate(i)

2`

∈ [0, ζ].

Thus, V +δ = (V +Φ)+(δ−Φ) =
∑K
k=1 rate(i)/ρk+η′,

for some η′ ∈ [−ζ, ζ], as desired. �

In the final stage of our analysis, we bound the
running time of the functions of the lazy-incs data
structure. At the essence of the running times is that the
increments for the levels can be maintained essentially
for free, for the same reason that a binary number can
be incremented in constant amortized.

Lemma 5.4. For a fixed instance of lazy-incs(ζ), let
• M ∈ N be the number of calls to inc,
• I the number of calls to insert, and
• D the number of calls to delete, and
• for each constraint i, let Vi be the sum of incre-
ments for constraint i confirmed in the return val-
ues of calls to inc and delete.

Then lazy-incs executes all M calls to inc, I calls
to insert, and D calls to delete in total running
time Õ(M + (I +D) log(1/ζ) +

∑
i Vi), where Õ hides

logarithmic factors in M .

Proof. It is easy to see that each insert and delete
take Õ(1) time. The work of each call to inc can be
divided into updating counters for levels (incs and rem)
and for the tracked weights (frac-incs). The work
to maintain incs and rem take Õ(1) amortized time
per inc for the same reason that incrementing a binary
integer takes constant amortized time: when we call
inc(ρ) with ` = dlog ρe, we put 1 credit on level `, half
a credit on level `+ 1, one fourth a credit on level `+ 2,
and so on. These credits, for each `, are at least as much
as the increase to full-incs(`), and the total number
of credits dispersed is 2. Since we only execute the body
of a flush(`) when rem(`), and incs(`) + rem(`) is
always with 1 of full-incs(`), the number of times
flush(`) is executed is proportional to the increase
in full-incs(`), which in turn can be paid for by

accrued tokens. As per maintaining frac-incs(i),
for each constraint i, frac-incs(i) is increased by
at least 1 whenever it is touched by flush(`) for
` = dlog rate(i)e. Every time frac-incs(i) exceeds
1, at least one unit of weight is committed by the
data structure and added to Vi. Since frac-incs(i) ≥
−2 at all times, flush(`) touches frac-incs(i) at
most a constant number of times before we either
increase Vi by at least one or i is deleted. Thus, the
work corresponding to maintaining frac-incs(i) can
be charged to Vi plus any calls to delete(i). �

This concludes the proof of Theorem 3.1.
Acknowledgments: We thank Neal Young and David
Karger for helpful comments and pointers.
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A Packing bases in a matroid
Consider the more general case where B is the set of
bases of a matroid M = (N , I) with n elements and
rank k. In the case of packing spanning trees, dy-
namic maintenance of an MST is very efficient. The
lazy-increment data structure solves the problem of
maintaining weights. For general matroids the bot-
tleneck is maintaining a minimum weight base during
the sequence of Õ

(
n/ε2

)
weight updates. If we rerun

the greedy algorithm at each iteration, then the over-
all running time would be Õ

(
n2/ε2

)
. To mimick the

capacitated-spanning-trees algorithm of Section 3,
we design a dynamic data structure dynamic-min-base
that maintains the minimum weight base amidst a se-
quence of increments to the weights in order to replace
one of the factors of n by the rank k. At the end of
this section we state the running time that is achiev-
able assuming a dynamic data structure for computing
a minimum-weight base.

The data structure dynamic-min-base is initialized
by a matroidM = (N , I) and an initial set of weights

w : N → R and supports two operations. The first, min-
base(), returns the minimum weight base. The second,
inc(e,δ), takes an element e ∈ N and a positive
increment δ > 0, and increases the weight we by δ,
adjust the minimum weight base as needed. Internally,
dynamic-min-base maintains the ground set N in a list
L sorted in nondecreasing order. The minimum weight
independent set can always be computed from one pass
of L by starting with an empty independent set I = ∅
and processing the elements in nondecreasing order of
weight, adding any element e to I such that I + e ∈ I.
Of course, reading all of N takes O(n) time. To reduce
the running time, we avoid rebuilding the minimum
weight independent set from scratch. When the weight
of an element e ∈ I is incremented, we remove e from
I and move e down L to reflect its new weight. Then,
starting from the former position of e in L rather than
the beginning, we replace e by f by taking the first
element such that I + f ∈ I.

Lemma A.1. The dynamic data structure dynamic-
min-base maintains the minimum weight independent
set.

Proof. Let L list the elements of N in nondecreasing
order of weight. For each element e ∈ N , let Le be the
prefix of L up to and including e, and let Ie = I ∩ Le.
For I ∈ I to be the minimum weight independent set,
it suffices to show that for every element e ∈ N , Ie is
a base in Le. Certainly, this holds for our the initial
independent set by construction. It remains that the
subroutine inc preserves this invariant.

Suppose we increment the weight of an element e.
If e /∈ I, or the position of e does not change, then
the claim is immediate. Suppose e ∈ I and the weight
increment demotes e to a new position further down the
list L. Breaking the weight increment into a sequence
of small weight increments that push e down just one
spot at a time, it suffices to assume e moves back one
slot in L.

Let d be the element immediately preceding e and
f the element immediately after e just before the
increment. Let L′ and I ′ fix the value of L and I before
the subroutine and let and L′′ and I ′′ be the value of
L and I after. L′ lists d, e, f in consecutive order and
L′′ lists d, f, e in consecutive order. Since no elements
in Ld change position or w/r/t membership in I (i.e.,
I ′d = I ′′d and L′d = L′′d), the invariant still holds for all
elements e ∈ Ld.

L0

L00

d

d

e

e

f

f
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Dynamic Minimum Weight Base

Operations Description Time

dynamic-min-
base(M,w)

Given a matroidM = (N , I) with n elements and rank k, and an initial
set of weights w : N → R over the groundset, initializes the data structure
and computes the initial minimum weight base.

O(n log n+ nkQ)
amortized

min-base() Returns the minimum weight base. O(1)

inc(e,δ) For an element e ∈ N and positive value δ > 0, increases the weight we
by δ.

O(k) amortized

dynamic-min-base(M = (N , I),w : N → R)
L← sorted list of N increasing in w
I ← ∅
for e ∈ L in order
if I + e ∈ I then I ← I + e

min-base()
return I

inc(e,δ)
we ← we + δ
let e′ be the element after e in L (if any)
reinsert e into L w/r/t we
if e ∈ I and the position of e in L changed
I ← I − e
for f ∈ L in order starting from e′

if f /∈ Iand I + f ∈ I
I ← I + f
break loop

end for
end if

The subroutine first considers f . In the simplest
case, we have f ∈ I ′ already. Here the subroutine leaves
f in I and then adds e back in before exiting, resulting
in the same independent set as we started with (that is,
I ′ = I ′′). However, the invariants (that I ′′e is a base in
L′′e for all e) may be broken because L′′ is different. To
this end, we observe that |I ′′d | = rank(L′′d) because I ′′d is
a base in L′′d , so∣∣I ′′f ∣∣ = |I ′′d |+ 1 = rank(L′′d) + 1

≥ rank(L′′d + f) = rank
(
L′′f
)
,

and

|I ′′e | = |I ′′d |+ 2 = rank(L′′d) + 2

≥ rank(L′′d + e+ f) = rank
(
L′′f
)
,

as desired.
Suppose f /∈ I ′, and I ′′d spans f (i.e., I ′′d + f /∈ I).

Then the subroutine does not add f to I, and then adds

e back in, resulting in the same independent set. Since
I ′′f = I ′′d also spans L′′d and L′′f = L′′d + c, we have that
I ′′f is a base in L′′f . Since I ′′e = I ′′f + e, L′′e = L′′f + e, and
I ′′f spans L′′f , we have that I ′′e spans L′′e , as desired.

In the final case, I ′d does not span f , so f is added to
I ′d and the routine terminates. That is, I ′′ = I ′− e+ f .
I ′′f is a base in L′′f because∣∣I ′′f ∣∣ = |I ′′e + f | = |I ′′e |+ 1 = rank(L′′d) + 1

≥ rank(L′′d + f) = rank
(
L′′f
)
.

I ′′e is a base in L′′e because |I ′′e | =
∣∣∣I ′f ∣∣∣ = rank

(
L′f
)

=

rank(L′′e ).
For any remaining element g that comes after f

in L′′, since we deleted exactly one element and added
exactly one element, we have

∣∣I ′g∣∣ = |I ′′D|, hence∣∣I ′′g ∣∣ =
∣∣I ′g∣∣ = rank

(
L′g
)

= rank
(
L′′g
)
,

and I ′′g is a base in L′′g , as desired. �

Lemma A.2. Initialization runs in O(n log n) time plus
O(nkQ) amortized time, and each increment inc(e,δ)
runs in O(log n + kQ) amortized time, where k is the
rank of the matroid and Q is the running time of a call
to the independence oracle. Furthermore, ` consecutive
calls inc(e,δ1), . . . , inc(e,δ`) to inc with the same
element e takes O(` log n+ kQ) amortized time.

Proof. Besides sorting and reinserting the elements by
weight, the work is proportional to the number of calls
to an independence oracle. Let us bound the number of
independence calls for a fixed element e ∈ N .

Suppose we test if I + e ∈ I and indeed I + e is
independent. Then e is added to our independent set,
and we can charge the oracle call to the last time e was
either ejected from I by a weight increment inc(e,δ),
or if this has never happened, when it was rejected by
the initialization.

Otherwise, I + e is dependent, and we do not add e
to I. This only happens during the initialization phase
or when an element d that was before e in L has its



weight incremented so much that d now comes after e
in L. In this case, even though e is not added to I, the
rank of Le has decreased by 1 because Ie is a base in Le
and the cardinality of Ie decreased by exactly 1 with the
removal of d. In a sequence of independence queries for
e without any calls to inc(e,δ), each time we call I+ e
and e is not added to I, the rank of Le has decreased by
1. In particular, we can only test if I+ e is independent
at most k = rank(M) times before e is either added to
I or its weight is increased by a call to inc(e,δ).

Note that when an element e is incremented several
times consecutively, we do not need to test if I + e is
independent in between these increments. Thus, for `
consecutive increments to e, we only pay kQ once, and
otherwise pay for each binary search to reinsert e. �

The data structure dynamic-min-base is a drop-
in replacement for the dynamic MST data structure of
Holm et al. [19]. The running time analysis is similar.
The total number of iterations is Õ

(
n/ε2

)
. By using the

lazy-incs data structure to maintain the weights, the
total time spent updating weights is Õ

(
n/ε2

)
. dynamic-

min-base takes O(nkQ) amortized time to initialize,
and each full weight increment returned by lazy-incs
for an element e in the minimum weight base takes
O(k) amortized time for dynamic-min-base to process.
Furthermore, the lazy-incs data structure increases
the weight of an element e is increased at most Õ

(
1/ε2

)
by lazy-incs.inc and any increments from lazy-
incs.delete immediately proceed a lazy-incs.inc,
so by Lemma A.2, dynamic-min-base spends Õ

(
k/ε2

)
amortized time processing increments to the weight of
e, and Õ

(
nk/ε2

)
time processing increments over all

elements in N . This gives a total running time of
Õ
(
nk/ε2

)
.

Theorem A.1. Let M = (N , I) be a matroid with n
elements and rank k, accessed by an independence oracle
that runs in time Q. Using the lazy-incs structure
of Section 5 to approximately maintain edge weights
and a dynamic data structure dynamic-min-base that
maintains the minimum weight independent set w/r/t
the approximate weights, capacitated-bases returns
a (1+ ε)-approximation for fractionally packing bases of
M in time Õ

(
nkQ/ε2

)
.

The running time Õ
(
nkQ/ε2

)
is a factor of O(k)

away from really being nearly-linear in the size of the
input. Still it improves on the naive Õ

(
n2/ε2

)
running

time in many applications where k is much smaller than
n. This situation is rectified somewhat in the next
section, where we obtain a nearly-linear running time in
the unweighted setting that is essentially independent of
k.

disjoint-bases’(N,B,ε,η)
w ← 1, x← 0, t← 0
while t < 1
b← arg min{w(b) : b ∈ B}

γ ← w(N )

w(b)

δ ← ε

ηγ
x← x+ δγb
for all e ∈ b
w(e)← exp(ε)w(e)

end for
t← t+ δ

end while
return x

For some matroids it is possible to implement
an efficient dynamic data structure for computing a
minimum weight base. We saw this for spanning trees.
Another example is laminar matroids. Suppose the total
time for h updates on a matroid with n elements and
rank k is given by T (n, k, h). Let S(n, k) be the time to
initialize the data structure. Here we are assuming that
the data structure allows for increments to the element
weights and that each operation outputs the one element
change to the current minimum weight base. Then we
can obtain a (1 − ε)-approximate fractional packing of
bases in time Õ(n/ε2 + S(n, k) + T (n, k, n log n/ε2)).

B Packing bases in the uncapacitated setting
The MWU algorithm simplifies considerably in the un-
capacitated case, giving a much improved running time
for the case of matroids. The direct implementation
of the algorithm, given as disjoint-bases’, is essen-
tially the same as the one for the capacitated setting,
except all weights update at the same rate because all
capacities are uniformly 1. disjoint-bases’ has only
Õ
(
n/kε2

)
iterations instead of Õ

(
n/ε2

)
because each it-

eration increases k weights by the full exp(ε)-factor. If
each minimum weight base in disjoint-bases’ com-
puted by the greedy algorithm, then each iteration is
bounded by O(n) calls to an independence oracle, and
the total running time is bounded by an Õ

(
n2/kε2

)
calls to the independence oracle. However, the com-
bination of a simple weight update and the simplicity
of the greedy algorithm makes the sequence of bases〈
b`
〉
chosen by disjoint-bases’ predictable enough to

precompute the entire sequence and make the final al-
gorithm nearly linear in n.

Each iteration of disjoint-bases’ computes the
minimum cost base w/r/t the current weights w (ini-
tialized to 1), and increases the weight of each ele-



disjoint-bases(N,B,ε,η)
// let Z =

⌊
ε+ (1 + ε)η + lnn

ε

⌋
for ` = 1, . . . , bnZ/kc
b` ← 0

repeat bZc times
for e ∈ N
search for first ` s.t.
(a) e /∈ b`
(b) b` + e ∈ I

b` ← b` + e
end for

end loop
w ← 1, x← 0, t← 0, `← 1
for ` = 1, 2, . . . until t ≥ 1

γ ← w(N )

w(b`)

δ ← ε

ηγ
x← x+ δγb`

t← t+ δ
end for
return x

ment in the base by an exp(ε)-factor. Every element
e ∈ N has its weight that grow along the same se-
quence of 1, exp(ε), exp(2ε), . . . , with a uniform up-
per bound of exp(ε+ (1 + ε)η + lnn) for all weights.
Let Z = b(ε+ (1 + ε)η + lnn)/εc denote the maximum
number of times an element e can be selected and have
its weight increased.

Consider the enlarged groundset N ′ = N × [Z],
where we make Z copies of each element, and define
the matroid M′ = (N ′, I ′) by letting a set S ⊆ N ′
be independent iff it contains no two copies of the
same element in N and the underlying elements are
independent inM. Define a set of weights v : N ′ → R>0

by v(e, i) = exp(εi). If we repeatedly find a minimum
cost base b′ inM′ w/r/t v and remove all the elements
of b′ from N ′, then the underlying elements of the
sequence of bases generated by this procedure is a
possible sequence of bases enumerated by disjoint-
bases’.

In the algorithm disjoint-bases, we precompute
these bases ahead of time. We start with bnZ/kc
independent sets b1, b2, . . . , each intialized to the empty
set ∅. We implicitly process each element of N ′ in
increasing order of weight, and use binary search to
find the first independent set where the element can
be inserted without breaking independence. It is easy
to see that this simulates iteratively calling the greedy
algorithm onM = (N , I) with weights initialized to 1
and scaling up the weight of each selected element by

exp(ε) each time an element is selected. However, by
using binary search over the bnZ/kc sets, the number
of independence oracle calls is cut down logarithmically,
to log(nZ/k) = Õ(1) per element.

Theorem B.1. Let M = (N , I) be a matroid with n
elements and rank k, and let Q denote the cost of a
call to an independence oracle for I. Then disjoint-
bases returns an ε-approximation for fractional packing
disjoint bases in running time Õ

(
nQ/ε2

)
.

Returning to packing spanning trees, in the unca-
pacitated setting, we can improve on the log factors of
Theorem 1.1 by observing that only a disjoint set union
data structure is required to implement the indepen-
dence oracle.
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